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P.A. Parker

Disclaimer

This work is to inform interested parties of ongoing research and to
encourage discussion. The views expressed on statistical issues are those
of the authors and not those of the U.S. Census Bureau.
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P.A. Parker

Background
Small Area Estimation

Goal: Estimate a population characteristic of interest aggregated over
geographic areas (or other domains) based on survey sample data.

Area-Level Models
▶ Treat the direct estimate as the

response variable
▶ Usually incorporate smoothing

through the model
▶ May be the only option for

analysts outside of a statistical
agency

Unit-Level Models
▶ Treat individual survey unit

responses as response variables
▶ Can make predictions for all

units in the population
▶ Typically feasible within a

statistical agency
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Area-Level Models
Fay III and Herriot (1979)

yi |θi , σ2
i

ind∼ N(θi , σ2
i ), i = 1, . . . , d

θi = x i
′β + ηi

ηi
iid∼ N(0, σ2

η),

▶ yi is the direct estimate of a
population quantity for area i

▶ θi is the latent population
quantity of interest

▶ σ2
i is the design-based variance

of yi
▶ x i is a vector of covariates for

area i

Note:
The design-based variance, σ2

i , is
assumed to be known, but in
practice, s2

i = σ̂2
i estimated from the

data and plugged in
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Modeling Unknown Sampling Variance
You and Chapman (2006)

yi |θi , σ2
i

ind∼ N(θi , σ2
i ), i = 1, . . . , d

s2
i |σ2

i
ind∼ Gamma

(
ni − 1

2 ,
ni − 1
2σ2

i

)
, i = 1, . . . , d

θi = x i
′β + ηi

ηi
iid∼ N(0, σ2

η)

σ2
i

ind∼ IG(ai , bi).

▶ A data model for s2
i is

introduced, conditional on the
true but unknown σ2

i
▶ ni represents the sample size in

area i

Note:
The data model for s2

i assumes a
simple random sample within area i .
More careful consideration may be
necessary for complex sample
designs.
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Modeling Unknown Sampling Variance
Sugasawa et al. (2017)

A Bayesian extension considers covariates in the variance model:

yi |θi , σ2
i

ind∼ N(θi , σ2
i ), i = 1, . . . , d

s2
i |σ2

i
ind∼ Gamma

(
ni − 1

2 ,
ni − 1
2σ2

i

)
, i = 1, . . . , d

θi = x i
′β1 + ηi

ηi
iid∼ N(0, σ2

η)

σ2
i

ind∼ IG
(
ai , biexp(x i

′β2)
)

.

Note:
The typical Gaussian prior for β2 requires a Metropolis-Hastings sampler,
which can be very difficult to tune, especially in high dimensions.
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Methodology
The Multivariate Log-Gamma Distribution

The cornerstone of our modeling framework is the Multivariate
Log-Gamma distribution (MLG).

▶ Introduced by Bradley et al. (2018) and Bradley et al. (2019)

▶ Used to Model dependent data using a Poisson likelihood

▶ Used by Parker et al. (2021) to model heteroskedastic data via a
negative log link function for the variance

▶ Acts as a conjugate prior for variance regression parameters
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Methodology
MLG Density

f (y) = det(V −1)

{
n∏

i=1

καi
i

Γ(αi)

}
exp
[
α′V −1(y − µ) − κ′exp

{
V −1(y − µ)

}]
, (1)

▶ Denoted by MLG(µ, V, α, κ)

▶ The length n vector µ acts as a centrality parameter

▶ The n × n matrix V controls the correlation structure

▶ The length n vectors α and κ are shape and rate parameters
respectively
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Methodology
MLG Relation to the Normal Distribution

Another important result given by Bradley et al. (2018) is that
MLG(c, α1/2V, α1, α1) converges in distribution to a multivariate normal
distribution with mean c and covariance matrix VV′ as the value of α
approaches infinity.

This allows for the use of MLG priors in place of Gaussian priors, in
situations where it is computationally preferable, while still achieving the
same prior in the limit of α.
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Proposed Approach
Heteroskedastic Area-Level Model (HALM)

yi |θi , σ2
i

ind∼ N(θi , σ2
i ), i = 1, . . . , d

s2
i |σ2

i
ind∼ Gamma

(
ni − 1

2 ,
ni − 1
2σ2

i

)
, i = 1, . . . , d

θi = x i
′β1 + η1i

−log(σ2
i ) = x i

′β2 + η2i

η1|σ2
η1 ∼ N(0, σ2

η1I)
η2|σ2

η2 ∼ MLG(0, α1/2ση2I, α1, α1)
β1 ∼ N(0, σ2

βI)
β2 ∼ MLG(0, α1/2σβI, α1, α1)
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Proposed Approach
Spatial Heteroskedastic Area-Level Model (SHALM)

The HALM can be modified to allow spatial dependence structure by
considering spatially correlated prior structures for the random effects:

η1|σ2
η1 ∼ N

(
0, σ2

η1(D − W )−1
)

η2|σ2
η2 ∼ MLG(0, α1/2ση2(D − W )−1/2, α1, α1)

This prior for η1 follows an intrinsic conditional auto-regressive (ICAR)
structure (Besag et al., 1991). The prior for η2 is asymptotically
equivalent to an ICAR prior.

Note:
Here, W represents an area adjacency matrix and D is a diagonal matrix
with entry Dii corresponding to the number of neighbors shared with area i
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Unit-Level Models
Battese et al. (1988)

yij
ind∼ N(µij , σ2)

µij = x ij
′β + ηi

ηi
iid∼ N(0, σ2

η)

▶ yij is the sample response for
unit j in area i

▶ x ij is a vector of unit-level
covariates

▶ ηi is a random effect for area i

Note:
This model assumes that the survey
design is ignorable. Bias will be
introduced in the case of an
informative sample design.
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Bayesian Pseudo-likelihood

A pseudo-likelihood (PL) approach may be used in a Bayesian setting to
account for informative sampling. Savitsky and Toth (2016) show that the
use of a PL within a Bayesian model results in a pseudo-posterior
distribution that converges to the population generating distribution

π̂(θ|y, w̃) ∝

∏
j∈S

f (yj |θ)w̃j

π(θ).

In this case, w̃j represents the survey weights after scaling to sum to the
sample size.

Predictions can then be made for the entire population via the posterior
predictive distribution, and aggregated as necessary to create population
estimates.
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Proposed Approach
Heteroskedastic Unit-Level Model (HULM)

y |µ, σ2 ∝
∏
j∈S

N(yij |µij , σ2
ij)w̃ij

µij = x ij
′β1 + η1i

− log(σ2
ij) = x ij

′β2 + η2i

η1|σ2
η1 ∼ N(0, σ2

η1)
η2|σ2

η2 ∼ MLG(0, α1/2ση2I, α1, α1)
β1 ∼ N(0, σ2

β)
β2 ∼ MLG(0, α1/2σβI, α1, α1)
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Empirical Simulation
Data

We work with the American Community Survey public use microdata
sample (PUMS)

▶ Limited to 2018 1-year PUMS
sample

▶ Subset to the state of California
▶ Roughly 179,000 individuals
▶ 265 public use microdata

areas (PUMAs)
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Empirical Simulation
Setup

We treat the existing PUMS data as a population for which we would like
to estimate population quantities.

▶ We use two different sampling methods
▶ Stratified random sampling by PUMA, taking a simple random sample

without replacement of 5 observations per area
▶ Taking a probability proportional to size sample with size variable

constructed from the original survey weight as well as respondent
income

▶ Using the sub-sampled data, we estimate the population average
income by PUMA

▶ We fit all models after log transforming the response
▶ We consider the log population size as an area-level covariate and we

consider age, sex, and race as unit-level covariates
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Empirical Simulation
Models

▶ We consider two unit-level models
▶ A weighted pseudo-likelihood version of the model used by Battese

et al. (1988) (PL-BULM)
▶ The proposed heteroskedastic unit-level model (HULM)

▶ We consider four area-level models
▶ The model used by Fay III and Herriot (1979) (FH)
▶ The model used by Sugasawa et al. (2017) (STK)
▶ The proposed heteroskedastic area-level model (HALM)
▶ The proposed spatial heteroscedastic area-level model (SHALM)

Note:
A Gaussian unit-level model for income is a starting point, but more
complex methodology would be ideal in this case
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Empirical Simulation
Metrics of Comparison

Root Mean Squared Error
(RMSE)√√√√ K∑

k=1

(θ̂k − θ)2

K

▶ Considers both bias and
variance of the point
estimates

Interval Score (Gneiting and Raftery, 2007)

1
K
∑K

k=1{(uk−ℓk)+ 2
α

(ℓk−θ)I(θ<ℓk)+ 2
α

(θ−uk)I(θ>uk)}

▶ Considers both the width and the
coverage rate of the interval estimate

▶ Evaluated for α = 0.05 (i.e., a 95%
credible interval)
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Empirical Simulation
Stratified Sampling Summary

Estimator Rel. RMSE Abs. Bias (×104) Cov. Rate Int. Score (×104)
PL-BULM 1.080 20.299 0.368 30.570
HULM 0.687 11.356 0.596 14.720
FH 0.694 5.126 0.894 8.790
HALM 0.640 7.677 0.956 6.695
SHALM 0.561 6.759 0.933 6.031
STK 0.636 6.958 0.952 6.648

Table: Empirical simulation results for stratified random sampling by Public-Use
Microdata Area
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Empirical Simulation
Stratified Sampling RMSE by PUMA
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Empirical Simulation
PPS Sampling Summary

Estimator Rel. RMSE Abs. Bias (×104) Cov. Rate Int. Score (×104)
PL-BULM 0.766 19.607 0.392 30.846
HULM 0.646 16.509 0.461 23.574
FH 0.492 6.815 0.955 8.855
HALM 0.442 9.765 0.958 6.800
SHALM 0.401 8.481 0.913 6.267
STK 0.429 9.195 0.958 6.468

Table: Empirical simulation results for probability proportional to size sampling
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Empirical Simulation
PPS RMSE by PUMA
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Summary

▶ We introduce an area-level model that uses covariates to shrink both
the direct estimate means and variances
▶ Use of the multivariate log-gamma distribution allows for

computational efficiency
▶ Computational efficiency allows for extension to spatial modeling for

both the mean and variance
▶ We introduce a computationally efficient heteroskedastic data model

for unit-level survey data under informative sampling
▶ We illustrate the proposed methodology via an empirical simulation

study
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Thank you!
paulparker@ucsc.edu

The paper can be found at the Journal of Survey Statistics and
Methodology using the QR code below:

24 / 25



P.A. Parker

Battese, G. E., Harter, R. M., and Fuller, W. A. (1988). An
error-components model for prediction of county crop areas using survey
and satellite data. Journal of the American Statistical Association,
83(401):28–36.
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Uses the Beamer simple theme from http://github.com/famuvie/beamerthemesimple
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Credible Distributions for Ranking of Entities

Disclaimer:

This presentation is released to inform interested parties of
ongoing research and to encourage discussion of work in
progress. Any views expressed on statistical, methodological,
technical, or operational issues are those of the presenter and
not those of the U.S. Census Bureau.
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Credible Distributions for Ranking of Entities

Introduction

Motivation

Inference on overall ranking of a set of entities, such as chess players,
subpopulations or hospitals, is an important problem.

Accountability of public institutions involve in making quantitative
comparisons between institutions in the areas of health and education.

Inference of ranks based on point estimates of means does not account
for the uncertainty in those estimates.

Goldstein and Spiegelhalter (1996) and Klein, Wright and Wieczorek
(2020) recognized treating estimated ranks without regard for
uncertainty is problematic.

KWW proposed a comprehensive frequentist solution. Following GS
Bayesian approach, we propose a comprehensive Bayesian solution.
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Introduction

Main points of the talk

Productions of accurate estimates of the means θ1, · · · ,θm for some
characteristic for the subpopulations are usually the primary goals.

It is also important to accurately identify subpopulations that are either
at the upper or at the lower end in terms of their means. This goal
requires accurately estimating the ranks of several or all the
subpopulations.

The importance of joint ranking of m subpopulations with unknown
means of a common characteristic has been emphasized by KWW.
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Credible Distributions for Ranking of Entities

Introduction

Importance of estimation of overall ranking

KWW cautioned that from published point estimates of the means with
no explicit ranking, practitioners frequently naively ascertain ranks of
the subpopulations. Ranks determined this way are only point
estimates, ignoring uncertainty.

Even the best possible estimators of small area means are subject to
error due to sampling variability. It is both imperative and a sound policy
to evaluate uncertainty associated with the reported ranks based on
reasonable estimators of means.

KWW used the American Community Survey (ACS) to rank 50 U.S.
states and DC, using mean commuting times of workers 16 years old
and over, not working from home. They determined joint confidence set
for the true rank vector from that of the true means.
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Credible Distributions for Ranking of Entities

Introduction

Travel time data (upper half of Table 1 of KWW paper)
 

592  M. Klein, T. Wright and J. Wieczorek 

Table 1. Mean travel time to work of workers 16 years old and over who did not work at home† 
 

 
Rank 

 
Geographical 

area 

 
Statistical 

significance? 

 
Estimated 

mean (min) 

 
Margin 
of error 

 USA 25.5 ±0.1 
51 Maryland 32.2 ±0.2 
50 New York 31.5 ±0.2 
49 New Jersey 30.5 ±0.2 
48 District of Columbia 30.1 ±0.5 
47 Illinois 28.2 ±0.2 
46 Massachusetts 28.0 ±0.2 
45 Virginia 27.7 ±0.2 
44 California 27.1 ±0.1 
44 Georgia 27.1 ±0.3 
42 New Hampshire 26.9 ±0.5 
41 Pennsylvania 25.9 ±0.1 
40 Florida 25.8 ±0.2 
39 Hawaii 25.7 ±0.4 
38 West Virginia 25.6 ±0.5 
37 Washington 25.5 ±0.2 
36 Delaware 25.3 ±0.6 
35 Connecticut 25.0 ±0.3 
34 Arizona 24.8 ±0.2 
34 Texas 24.8 ±0.1 
32 Colorado 24.5 ±0.3 
32 Louisiana 24.5 ±0.2 
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Credible Distributions for Ranking of Entities

Introduction

Travel time data (lower half of Table 1 of KWW paper)
32 Louisiana  24.5 ±0.2 
30 Tennessee ‡ 24.2 ±0.2 
29 Michigan ‡ 24.1 ±0.2 
29 Nevada ‡ 24.1 ±0.4 
27 Alabama § 23.9 ±0.2 
27 Mississippi ‡ 23.9 ±0.4 
25 South Carolina ‡ 23.6 ±0.3 
24 Indiana  23.5 ±0.2 
23 Maine  23.4 ±0.4 
23 North Carolina  23.4 ±0.2 
23 Rhode Island ‡ 23.4 ±0.5 
20 Missouri  23.1 ±0.2 
20 Ohio  23.1 ±0.1 
18 Minnesota  23.0 ±0.2 
17 Kentucky  22.9 ±0.2 
16 Oregon  22.5 ±0.3 
15 Vermont  21.9 ±0.5 
15 Wisconsin  21.9 ±0.2 
13 Utah  21.6 ±0.3 
12 New Mexico  21.4 ±0.4 
11 Arkansas  21.3 ±0.4 
10 Oklahoma  21.1 ±0.2 
9 Idaho  19.7 ±0.4 
8 Kansas  18.9 ±0.3 
7 Iowa  18.8 ±0.2 
6 Alaska  18.4 ±0.5 
5 Montana  18.2 ±0.5 
4 Nebraska  18.1 ±0.3 
4 Wyoming  18.1 ±0.8 
2 North Dakota  16.9 ±0.6 
2 South Dakota  16.9 ±0.5 
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Credible Distributions for Ranking of Entities

Introduction

Early works

Some of the early classical works on ranking and selection of
population means are by Bechhofer (1954), Gupta (1956).

A Bayesian approach to ranking several binomial populations: Bland
and Bratcher (1968), Govindarajulu and Harvey (1974), Goel and Rubin
(1977).

Laird and Louis (1989) proposed an empirical Bayes (EB) approach,
Morris and Christiansen (1994) proposed an approximate hierarchical
Bayes (HB) approach.

Aitkin and Longford (1986) and Laird and Louis (1989) used EB
approach to ranking.

Berger and Deely (1988) used an HB approach to ranking.
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Credible Distributions for Ranking of Entities

Review of KWW (2020) Framework

Estimation of overall ranking

Klein et al. (2020) considered overall ranking of the 50 US states and
DC, based on θi, the mean commuting times of the workers not working
from home, i = 1, · · · ,m = 51.

True means θi’s are estimated from the ACS data; y1, · · · ,ym are the
estimates from ACS

ř1, · · · , řm are the ranks of the true means

R1, · · · ,Rm are the ranks of y1, · · · ,ym

Estimates of the ranks ř1, · · · , řm from R1, · · · ,Rm, the ranks of the point
estimates y1, · · · ,ym ignore the sampling error in the y-estimates
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Credible Distributions for Ranking of Entities

Review of KWW (2020) Framework

Klein et al. joint confidence set for θ

KWW assumed the model

Yi|θ
ind∼ N(θi,Di), i = 1, · · · ,m,

Based on this, KWW created (1−α)-level joint confidence set for θ

based on confidence intervals

Ii =
(

Yi − z1− γ

2

√
Di, Yi − z γ

2

√
Di

)
≡ (Li,Ui),

for i = 1, · · · ,m, for individual θi’s. KWW determined γ from α by
Bonferroni inequality or independence method.

A joint (1−α)-confidence set for θ is the Cartesian product of the
intervals Ii, for i = 1, · · · ,m.

13 / 54



Credible Distributions for Ranking of Entities

Review of KWW (2020) Framework

Klein et al. confidence solution for overall ranking

From the joint confidence set I1 ×·· ·× Im of θ, KWW created confidence
solution for overall ranking. For each i ∈ {1,2, · · · ,m}, they define the
sets

Ci = {1,2, · · · ,m}\{i},
ΛLi = {j ∈ Ci : Uj ≤ Li},
ΛRi = {j ∈ Ci : Ui ≤ Lj},
ΛOi = {j ∈ Ci : Uj > Li and Ui > Lj}= Ci \{ΛLi ∪ΛRi}

Klein et al. (2020) show that the set of rank vectors{
(r1, · · · ,rm) : ri ∈ {|ΛLi|+1, · · · , |ΛLi|+1+ |ΛOi|} for i = 1, · · · ,m

}
,

is a joint confidence set for the overall rank vector ř = (ř1, · · · , řm) with
coverage probability at least (1−α).
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Review of KWW (2020) Framework

Illustration of KWW Ranking
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Plot of CIs for 10 different entities (KWW Method)
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Consider D (i = 4). Then

ΛLi = {8,9,10}, ΛRi = {1,2}, ΛOi = {3,5,6,7}
|ΛLi|= 3, |ΛOi|= 4, ri ∈ {3+1, · · · ,3+4+1}= {4,5,6,7,8}
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Review of KWW (2020) Framework

Joint conf. set for ranking from jt CIs: Table 2 of KWW
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Review of KWW (2020) Framework

Joint conf. set for ranking from jt CIs: Table 2 of KWW
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Proposed Bayesian Framework

Notion of a credible distribution of the overall ranking

We construct Bayesian credible distributions of overall ranking by a
sampling-based approach by drawing samples from the posterior
distribution of θ.

We generate a large sample FM , of size S, of θ1, · · · ,θm values from
their joint posterior pdf, πM(θ|y), derived under a model M.

We empirically choose a suitable subsample of size ≈ S× (1−α) from
these S samples; denote this set by FM,α,y. This subsample
corresponds to an appropriate credible set of θ.

The set FM,α,y has empirical posterior probability (1−α). We rank each
of the chosen θ and create a credible distribution for the true rank vector
ř1, · · · , řm
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Proposed Bayesian Framework

Two Bayesian models

An unstructured Bayesian model:

(I) Yi|θ1, · · · ,θm
ind∼ N(θi,Di), i = 1, · · · ,m,

(II) π(θ1, · · · ,θm) = 1 for −∞ < θ1, · · · ,θm < ∞. The joint posterior pdf of θ is
a known MVN.

Fay-Herriot model: a class of hierarchical Bayesian models:

(I) Yi|θ1, · · · ,θm
ind∼ N(θi,Di), i = 1, · · · ,m,

(II) Conditional on model parameters β,A, subpopulation means θi’s are
independently distributed, given by θi|β,A

ind∼ N(xT
i β,A), i = 1, · · · ,m,

(III) π(β,A) = 1/
√

D̄+A . Posterior distribution of θ can be easily sampled by
MCMC or by non-Markovian method.
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Proposed Bayesian Framework

Credible set for θ: A Cartesian credible set

From the sample in FM , we take the ith component of each vector to
create a sample Fi for θi. For a suitable κ, we determine the (κ/2)th
and (1−κ/2)th quantiles, ai and bi, of the set Fi. Define now

Si = {s : ai ≤ θ
(s)
i ≤ bi,s = 1,2, · · ·S}

SJ = ∩m
i=1Si

Let KJ = |SJ |. For any α ∈ (0,1), we determine κ in such a way that KJ is
the integer closest to S× (1−α).

The selected set
{θ

(s),s ∈ SJ}
is an approximate representation of a (1−α) joint credible set for θ. We
use these θ values to determine a rank distribution, described below.
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Proposed Bayesian Framework

A nearly optimal credible set for θ: an elliptical set

An optimal method to create credible set for θ is the HPD method.
For the UB model, HPD credible set is elliptical.
For the HB model, an HPD set is approximately elliptical.

The HPD credible set is centered at

θ̂ =
1
S

S

∑
s=1

θ
(s)

and the elliptical shape is determined by the dispersion matrix

V =
1
S

S

∑
s=1

{θ
(s)− θ̂}{θ

(s)− θ̂}T .
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Credible Distributions for Ranking of Entities

Proposed Bayesian Framework

A nearly optimal credible set for θ: an elliptical set

Create Mahalanobis distances

d(s)B = M
(

θ
(s), θ̂,V

)
, for s = 1, · · · ,S.

Find c, the (1−α)-quantile of these distances, and create an empirical
credible set FM,α,y for θ with {s ∈ FM : d(s)B ≤ c}.

The selected set FM,α,y is an approximate representation of a (1−α)
joint HPD credible set for θ.

Again, we use these θ values to determine a rank distribution below.
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Proposed Bayesian Framework

Joint credible distribution of overall ranking

For each sample in FM,α,y, we create a two-way m×m table, columns as
the populations or subjects to be ranked and rows as the ranks of the
components of θ, explained now. For each sample such as θ(s1), we
start with an m×m null matrix.

If the ith component of θ(s1) does not tie with any other component and
has rank ji, we put a 1 in the jith row of the ith column. If two
components k and l tie for ranks j and j+1, we replace elements
(k, j),(k, j+1),(l, j),(l, j+1) by 1/2.

For all K elements in FM,α,y, we complete K tables, and for some weight
w(θ) we take a weighted average of these tables, where the weights
sum to 1. This produces a credible distribution of overall ranking. We
denote the distribution of ři by πři,M,T,y.
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Credible Distributions for Ranking of Entities

Baseball Example − Efron and Morris (1975)

Ranking baseball players: An example by Efron and Morris

Efron and Morris (1975) considered batting averages of 18 major
league baseball batters from their first 45 at bats in the 1970 baseball
season to predict their performances in the remainder of that season.

A reasonable representative value for θi was the player’s average (ωi),
known, in the remainder of the season after his first 45 at bats.

The sample proportion of hits Yi from first 45 at bats is approximately
normal with mean θi and estimated variance Di = Yi(1−Yi)/45.
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Credible Distributions for Ranking of Entities

Baseball Example − Efron and Morris (1975)

KWW confidence set of overall ranking of players
From equation (9) of Klein et al. (2020) a 90% joint confidence region for
the rank vector ř is given by

{(ř1, · · · , ř18) : řk ∈ {1,2, · · · ,18} for k = 1, · · · ,18}.

This confidence set for the rank vector is depicted in the Figure
next slide.
Possible ranks for each player in this set are shown by a yellow
line segment stretching from 1 to 18.
According to this confidence set, any player can rank from 1 to 18,
and any particular ranks can be held by any of these 18 players.

The credible distribution is pictorially presented by overlaying on the
figure of the confidence set solid red circles with area of a circle is
proportional to the probability it is representing.
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Baseball Example − Efron and Morris (1975)

Conf sets and credible distrns (Baseball)

KWW Rank Bounds (UB)
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Credible Distributions for Ranking of Entities

Baseball Example − Efron and Morris (1975)

Comparison of confidence sets and credible distributions
ωi: Batting average from the remainder of the season after first 45 at
bats for player i.

ξi: A surrogate of true rank based on ωi.

Compute for player i = 1, · · · ,18,

εi,HB,C = Eπři ,HB,C,y
(
|ři −ξi|

∣∣∣y) , εi,HB,E = Eπři ,HB,E,y
(
|ři −ξi|

∣∣∣y) ,
εi,UB,C = Eπři ,UB,C,y

(
|ři −ξi|

∣∣∣y) , εi,UB,E = Eπři ,UB,E,y
(
|ři −ξi|

∣∣∣y) ,
εi,KWW =

1
|ΛOi|+1

|ΛLi|+|ΛOi|+1

∑
j=|ΛLi|+1

|j−ξi|.
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Credible Distributions for Ranking of Entities

Baseball Example − Efron and Morris (1975)

Application to 1970 Batting averages of 18 Major League players

Players yi ωi Ri ξi εi,HB,C εi,HB,E εi,UB,C εi,UB,E εi,KWW
1. Clemente .400 .346 18 18 5.90 5.90 1.18 1.18 8.50
2. F. Robinson .378 .298 17 15 4.39 4.39 1.87 1.87 6.17
3. F. Howard .356 .276 16 13 4.24 21.0 2.73 2.73 5.17
4. Johnstone .333 .222 15 3 8.11 8.11 11.40 11.39 6.83
5. Berry .311 .273 13.5 12 4.33 4.33 2.44 2.44 4.83
6. Spencer .311 .270 13.5 11 4.25 4.25 2.96 2.96 4.61
7. Kessinger .289 .263 12 7 4.96 4.96 4.92 4.92 4.83
8. L. Alvarado .267 .210 11 2 7.66 7.66 8.13 8.13 7.61
9. Santo .244 .269 9.5 10 4.36 4.34 3.09 3.09 4.50
10. Swoboda .244 .230 9.5 5 5.41 5.41 3.98 3.98 5.61
11. Unser .222 .264 6 8.5 4.26 4.26 3.09 3.08 4.56
12. Williams .222 .256 6 6 4.40 4.40 2.64 2.64 5.17
13. Scott .222 .303 6 16 7.64 7.64 9.36 9.36 6.83
14. Petrocelli .222 .264 6 8.5 4.25 4.25 3.33 3.33 4.56
15. E. Rodriguez .222 .226 6 4 5.38 5.38 3.46 3.46 6.17
16. Campenaris .200 .285 3 14 6.64 6.64 8.97 8.97 5.61
17. Munson .178 .316 2 17 9.54 9.54 13.57 13.56 7.61
18. Alvis .156 .200 1 1 5.46 5.46 1.43 1.43 8.50
Total abs. dev. 101.16 101.16 88.56 88.56 107.64
1013× Vol. 51.38 1.32 93756 1757 85722
Average length 0.236 0.193 0.359 0.288 0.357
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Baseball Example − Efron and Morris (1975)

Summary of simulations for the baseball setup

1:=APEAD(W), 2:=APEAD(UW), 3:=(AveVol)1/m, 4:=Ave length
With covariate No covariate

H. Bayes U. Bayes H. Bayes U. Bayes
A KWW Cart Ellip Cart Ellip KWW Cart Ellip Cart Ellip

1 5.518 1.178 1.178 2.313 2.313 5.978 5.366 5.366 4.642 4.642
2 5.518 1.543 1.521 2.560 2.545 5.978 5.194 5.199 4.804 4.795

0.001 3 0.356 0.262 0.212 0.357 0.286 0.356 0.259 0.209 0.357 0.287
4 0.357 0.247 0.199 0.358 0.287 0.357 0.241 0.196 0.358 0.287
1 5.268 1.835 1.835 2.148 2.148 5.919 4.065 4.066 3.468 3.468
2 5.268 2.033 2.020 2.378 2.365 5.919 4.094 4.094 3.714 3.701

0.005 3 0.356 0.297 0.238 0.357 0.287 0.356 0.295 0.237 0.356 0.286
4 0.357 0.289 0.232 0.358 0.287 0.357 0.281 0.227 0.358 0.287
1 4.879 1.874 1.874 1.980 1.980 5.668 2.967 2.967 2.766 2.766
2 4.879 2.063 2.053 2.188 2.176 5.668 3.211 3.203 3.013 2.999

0.01 3 0.356 0.318 0.255 0.357 0.286 0.356 0.317 0.254 0.357 0.287
4 0.357 0.314 0.252 0.358 0.287 0.357 0.312 0.251 0.358 0.288
1 2.919 1.070 1.070 1.061 1.061 3.212 1.177 1.177 1.168 1.168
2 2.919 1.205 1.198 1.194 1.186 3.212 1.328 1.319 1.313 1.305

0.1 3 0.356 0.351 0.282 0.356 0.287 0.356 0.350 0.281 0.356 0.286
4 0.357 0.352 0.283 0.358 0.287 0.357 0.351 0.282 0.358 0.287
1 1.209 0.417 0.417 0.418 0.418 1.181 0.370 0.370 0.369 0.369
2 1.209 0.467 0.465 0.467 0.464 1.181 0.426 0.423 0.426 0.423

1 3 0.356 0.356 0.286 0.357 0.287 0.356 0.356 0.286 0.357 0.287
4 0.357 0.357 0.287 0.358 0.288 0.357 0.357 0.287 0.358 0.288
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Credible Distributions for Ranking of Entities

Commuting Times Example − Klein et al. (2020)

Ranking of US states based on commuting times

Recall that, in a pioneering article, Klein et al. (2020) applied their
frequentist approach to rank fifty states of the U.S. and DC by mean
commuting times of workers sixteen or older and not working from
home. They used survey data collected from the ACS.

Let us revisit their Table 2 next.
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Commuting Times Example − Klein et al. (2020)

Joint conf. set for ranking from jt CIs: Table 2 of KWW
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Commuting Times Example − Klein et al. (2020)

Joint conf. set for ranking from jt CIs: Table 2 of KWW
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Credible Distributions for Ranking of Entities

Commuting Times Example − Klein et al. (2020)

Ranking of US states based on commuting times

In the figure below, we recreated Figure 1 of Klein et al. (2020) that
depicted the frequentist solution of the confidence region for ranking.

From the figure, for example, the possible ranks from this solution for
the state ID are 4−9.

On the other hand, the states which can hold the rank 9 are the states
WY, AK, MT, IA, KS and ID (the pink line segments for these states
intersect the horizontal line for ranks = 9).
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Commuting Times Example − Klein et al. (2020)

KWW2020 Figure 1

An alternative visualization of the 90% joint confidence region for travel time ranking
given by Figure 1 of Klein et al. (2020) with an overlapping credible distribution from

unstructured Bayes method
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Credible Distributions for Ranking of Entities

Commuting Times Example − Klein et al. (2020)

Credible distribution from Cartesian credible intervals
On the last figure we overlaid credible distribution based on a C.
credible set from the UB model. Probabilities from credible distribution
are shown by yellow circles, bigger circles for larger probabilities.

To interpret probabilities depicted in the figure, we focus specifically on
its 4th row and 4th column. From the 4th column of this figure we find
that the state of NE can have ranks 3−6 with respective probabilities
about 0.2,0.5,0.2, and 0.1.

The 4th column in the figure shows the rank set for NE based on Klein
et al. (2020) solution. It shows that in addition to the four ranks 3 to 6,
NE can also rank 1, 2, 7 and 8.

For ID, 9th column shows the KWW rank set {4, · · · ,9}. Rank 9 on the
9th row is captured by one of six states: WY, MT, IA, AK, KS, ID.
However, credible probabilities for ID and for rank 9 are 1.
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Commuting Times Example − Klein et al. (2020)

CI’s for means of certain contender states (Rank = 4)
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Commuting Times Example − Klein et al. (2020)

Nine states likely at rank 4 (Q4 of Table 2 from KWW)

40 / 54



Credible Distributions for Ranking of Entities

Commuting Times Example − Klein et al. (2020)

Credible Distrns of Ranks vs. Conf. Sets (a portion)
Commuting time example: Comparison of credible distributions of ranks for states

implied by unstructured Cartesian sets with the joint confidence sets of ranks by KWW.
States considered are those which are contenders of rank 4 by KWW solution.

Rank ID KS IA AK MT NE WY ND SD

1 0.01 37.37 62.62
2 0.15 62.58 37.27
3 1.76 16.40 20.86 60.81 0.06 0.11
4 3.91 22.53 55.41 18.15
5 0.79 0.37 13.81 51.67 20.10 13.26
6 1.75 4.33 76.16 9.03 3.64 5.10
7 13.10 81.30 3.91 0.34 1.35
8 84.35 14.00 0.46 0.03 1.16
9 100

Conf. set 4-9 3-9 3-9 1-9 1-9 1-8 1-9 1-6 1-6

Mean 19.7 18.9 18.8 18.4 18.2 18.1 18.1 16.9 16.9
MOE 0.749 0.562 0.375 0.936 0.936 0.562 1.498 1.124 0.936
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Credible Distributions for Ranking of Entities

Median Incomes Example

Ranking of US states based on median incomes

Inference on median incomes of the US states for the income year 1989
has served as a benchmark example to evaluate effectiveness of
various small area estimation methods.

Fay (1987) suggested using two covariates for Fay-Herriot model. xi1 is
the ith state median income for 1979 from 1980 Census, and
xi2 = (PCIi,1989/PCIi,1979)xi1, i = 1, . . . ,m, where PCIi,1979 1979 per capita
income of the ith state.

The 1990 census incomes for states were medians based on a large
number of households from each state. These are “gold standard”. This
will be used to create “surrogate ranks” ξi for true ranks ř.
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Median Incomes Example

A visualization of median income ranking
90% joint conf region for median income ranking by KWW with an overlapping credible

distrn by HB method
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Median Incomes Example

Plots of expected or average absolute deviations

HB vs. KWW
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Median Incomes Example

Plots of expected or ave abs deviations

HB/UB vs. KWW
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Median Incomes Example

Plots of expected or average absolute deviations

UB-W vs. KWW and UB-UW vs. KWW
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Summary and Conclusions

Concluding Remarks
In small area estimation, there is also some interest in estimating the
ranks of the individual small areas based on their means. Shen and
Louis (1998, JRSS B), for example, simultaneously considered
estimation of small area means and point estimation of ranks.

Accounting error of estimation of ranks is also important. To address
this challenge, in a pioneering article Klein et al. (2020) considered set
estimation of overall ranking. They created joint confidence set of the
rank vector by employing a rectangular confidence set of the mean
vector θ. The solution finds lower and upper bounds as the possible
values for the true rank ři, i = 1, · · · ,m. This frequentist solution may be
interpreted as a confidence distribution for ři, uniformly distributed over
the integers between the lower and the upper bounds presented above.
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Credible Distributions for Ranking of Entities

Summary and Conclusions

Concluding Remarks

The frequentist method cannot use auxiliary information or model the
unknown true mean θ. Our Bayesian approach allows modeling of the
mean vector to utilize useful auxiliary information as well as to develop
the various credible sets for θ including the HPD sets, exact or nearly
exact.

We use appropriate credible sets to create a credible distribution for the
true rank ři. It is more informative than the frequentist confidence set. In
the Bayesian proposal we can also allow more probable θ’s in the
credible set to have them bigger weights to the credible distribution.
Application of proposed credible distributions is computationally
straightforward.
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Credible Distributions for Ranking of Entities

Summary and Conclusions

Concluding Remarks

Demonstrated our solution to three applications. All three applications
and a simulation study mimicking two of the applications demonstrated
superior performance of the proposed method over the existing
frequentist method.

Evaluation of frequentist confidence set and the credible distributions
based on average or expected absolute deviations of estimated ranks
from the “surrogate ranks” show better performance for the Bayesian
solutions. With no covariates UB credible distributions perform better
than HB credible distributions. Commuting example neither has any
covariates nor any representative values of the unknown true means.
Even then the credible distributions are “more conclusive”, “less
dispersed” and “more illuminating” than the frequentist solution.
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Summary and Conclusions

Concluding Remarks
The median income problem has useful covariates as well as
representative values (from the 1990 census) of the true means.
Credible distributions from the HB model with the covariates performed
the best when measured in terms average absolute deviations. Both
credible distributions, from the UB model and the HB model, have better
performance than the frequentist method.

The HB credible distribution with covariates is uniformly better than the
other solutions. But, the without covariates it does not have uniform
superiority. Lack of covariates degrades the HB credible distribution.

In terms of size measures of the confidence or credible sets for θ,
Bayesian solutions are vastly superior, and HB credible sets are shorter
or more “compact” than the UB-based credible sets.
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Credible Distributions for Ranking of Entities

Summary and Conclusions

In Summary,
We proposed a Bayesian formulation for inference on overall ranking of
a set of entities

It is competitive with recent frequentist methods, and more effective and
informative, and is as easy to implement as it is to compute the
posterior means and variances of the entity means.

Using credible sets, we created novel credible distributions for the rank
vector of the entities.

We evaluate the Bayesian procedure in terms of accuracy and stability
in two applications and a simulation study.

Frequentist approaches cannot take account of covariates, but the
Bayesian method handles them easily
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Summary and Conclusions

THANK YOU!!!
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Motivation

• U.S. Bureau of Labor Statistics (BLS) sought to estimate total employee 

compensation (wages and benefits) for detailed occupations within small 

geographies

• Example: 

• Construction laborers in the New York metropolitan statistical area have 

average wages of $26 / hour and benefits worth $5 / hour

• Example applications:

• Pricing of labor for contracts in public works projects

• Economic development research for cities and regions 



Domains of Interest: 
Occupation by Geography

• Six-digit standard 
occupational classification 
codes (SOC6)

• SOC2: 15-0000        
“Computer and Mathematical 
Occupations

• SOC4: 15-2000   
“Mathematical Science Occupations

• SOC6: 15-2041 
“Statisticians”

Occupations Geographies: MSA and BOS
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Available Data

• Measures wages and 
measures benefits

• Small sample size with 
limited utility for subnational 
estimates

National Compensation 
Survey (NCS)

Occupational Employment 
Statistics (OES) Program*
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• Measures wages but 
doesn’t measure benefits

• Large sample size
available for subnational 
estimates

* Recently renamed to Occupational Employment 
and Wage Statistics (OEWS) program



Need for Data Integration: 
Benefits Only Observed in Some Domains

• Almost all domains have an 
OES wage estimate

• Only 8% of domains have a 
benefits estimate available 
from NCS

• NCS availability improves at 
higher levels of aggregation

• Availability for SOC6 domains:
63% at Census division level
94% nationally

Occupations MSA/BOS x SOC6 Domains
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Need for Data Integration: 
Benefits Only Observed in Some Domains

• Almost all domains have an 
OES wage estimate

• Only 8% of domains have a 
benefits estimate available 
from NCS

• NCS availability improves at 
higher levels of aggregation

• Availability for SOC2 domains:
100% at Census division level

Occupations MSA/BOS x SOC6 Domains
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Challenge: Small Sample Sizes

Summary of sample sizes of domains, by level of aggregation; pseudo-effective 

sample sizes for NCS

• Median NCS sample size is 1 among domains with any NCS observations

• Median OES sample size is 5 in OES-only domains and 6 in all OES domains

• Currently, BLS doesn’t publish total compensation estimates for occupations within 

geographies



Need for Data Integration: 
Benefits Only Observed in Some Domains

• The NCS wage estimate for a given 
domain is typically noisier than the 
OES estimate

• Presence of different estimates 
from different surveys may be 
confusing for data users

Occupations
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* Visualization Note: Two (large) domain-level NCS wage 
estimates removed to improve visualization

Domain-level wage survey 
estimates, MSA/BOS x SOC6*



Modeling Estimation Approach

• Data integration using bivariate modeling:

• Use the strong relationship between wages and benefits to predict benefits 

for domains that only have an OES wage estimate

• Combine OES and NCS wage estimates into a single wage estimate

• Smoothing through small area estimation methods:

• Improve upon the precision of the OES and NCS direct estimates by 

borrowing strength across domains

• Hierarchical Bayesian modeling to accomplish both goals

• Treat unknown population wage and benefits as bivariate latent 

characteristic

• Fay-Herriot type model with sampling level and smoothing levels

• Exploit nested structure of domains when smoothing



Modeling Inputs

• Wage and benefit estimates in 
$/hr, on log scale

• Accompanying variance 
estimates

• Stabilized using the projection 
method of Erciulescu & Opsomer 
(2019)

• Covariates 𝒙𝒊 defined in terms of 
area type (MSA or BOS), census 
division, and two-way 
interactions

• Identifiers for SOC2 and SOC6

Survey Point Estimate Variance 

Estimate

OES 𝑦𝑖
𝑂𝐸𝑆 𝜎1,𝑖

𝑂𝐸𝑆 2

NCS 𝑦𝑖
𝑁𝐶𝑆 = (𝑦1,𝑖

𝑁𝐶𝑆, 𝑦2,𝑖
𝑁𝐶𝑆) Σ𝑖

𝑁𝐶𝑆
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Bivariate Hierarchical Bayes Multi-fold Model
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Sampling Level

𝑦𝑖
𝑁𝐶𝑆 ∼ N 𝜃𝑖 , 𝛴𝑖

𝑁𝐶𝑆 𝑖 observed in NCS

𝑦1,𝑖
𝑂𝐸𝑆 ∼ N 𝜃1,𝑖 , 𝜎𝑖

𝑂𝐸𝑆 2
𝑖 observed in OES

Smoothing Level

𝜃𝑖 ∼ 𝑁 𝑥𝑖
′𝛽 + 𝑢𝐼 , 𝛴𝑏 , 𝑖 observed in NCS or OES, 𝑖 ∈ 𝐼

𝑢𝐼 ∼ 𝑁 0, 𝛴𝑢 f

Prior Distributions

𝛽 ∼ N 0, 104 component−wise

𝛴𝑏 , 𝛴𝑢 ∼ Inverse−Wishart 𝐼2, 3 component−wise

SOC6

MSA/BOS x SOC6



Model Fit, Assumption Checks, Predictions

▪ Fit

• R JAGS

• Markov chain Monte Carlo (MCMC): 2,100 samples for inference

• 3 chains with 10,000 samples each. 3,000 burn-in, 1-in-10 thinning to reduce storage

• Models fit separately for the 22 major occupation groups (SOC2)

▪ Assumption checks

• MCMC diagnostics: 𝑅, MC effective sample size, MC standard error, 
autocorrelation

• Model specification: posterior predictive checks

▪ Prediction

• Marginal posterior distribution for 𝜃𝑖
• Transformations: exponential, sum



Comparison of NCS and Model: 
Point Estimates

Domain-level wage and benefits estimates, MSA/BOS x SOC6



Comparison of OES and Model: 
Point Estimates

Domain-level wage and benefits estimates, MSA/BOS x SOC6



Comparison of NCS 
and Model: 
Standard Errors



Comparison of OES 
and Model: 
Standard Errors



Comparison of NCS, OES, and model: 
coefficients of variation

Summary of coefficients of variation (%) of compensation estimates for the 

MSA/BOS x SOC6 domains

• Recall there are 242,686 domains in the prediction space



Summary

• Application results in a complete set of wage, benefits, and total 
compensation estimates for all domains of interest, with associated 
uncertainty measures

• Hierarchical model estimates have improved precision compared to 
direct estimates from the survey

• Applicable to other scenarios where two surveys collect information 
on a common variable that is strongly related to a variable only 
measured in one survey



Full Paper:

Erciulescu, A.L., Opsomer, J.D. and Schneider, B.J. (2023). 
“Statistical data integration using multilevel models to 
predict employee compensation.” Canadian Journal of 
Statistics, 51: 312-326.

https://doi.org/10.1002/cjs.11688

Comments, Questions, Suggestions?

BenjaminSchneider@westat.com

https://doi.org/10.1002/cjs.11688
mailto:BenjaminSchneider@westat.com
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