

Geospatial data for a better future

Instructions: Click on the link to access each author's presentation.

Chair: Peter Petko

Participants:

Manuel Cuélla Rio: Adoption of GSBPM to manage Geospatial Information Production Process

Abel Coronado: Implementation of the Open Data Cube for Earth Observation in Mexico: Challenges and Prospects in Generating Statistical and Geographical Information

Wlodzimierz Okrasa: The Community and Individual Well-Being Interaction in Alternative Modelling Approaches Using Spatial Data

Ranyart Rodrigo Suarez Ponce de Leon: Assessing desertification and vegetation loss in Natural Protected Areas of northern Mexico

Adoption of GSBPM to manage Geospatial Information Production Processes

Manuel Cuéllar-Río Deputy Director-General, Information Integration INEGI

International Statistical Institute

The disciplines of Statistics and Geography complement each other

INEGI is an autonomous public institution responsible for regulating and coordinating the National System of Statistical and Geographical Information, as well as for collecting, analyzing, and disseminating statistical and geographical information about Mexico's territory, resources, population, and economy

Old and new ways of producing cartography

Mexican Geospatial Data Cube (MGDC)

- LandSat
- Sentinel
- MODIS

The Open Data Cube is an open-source solution for accessing, managing and analyzing large amounts of geographical information systems data, primarily earth observation data

- Health and density of vegetation
- Urbanization
- Illegal mining

From Research Project to Production Process

As a **research project**, the MGDC was a temporary effort with specific goals and outcomes These results have contributed to **expand** the **data ecosystem**. Now, we needed to streamline it as a **production process**

Transfer the MGDC to the area in charge of geographical information production

Statistical and Geographical Process Model (MPEG-GSBPM)

MGDC as a **Production Process**

MGDC's development stages vs. MPEG phases

Management of the MGDC within the MPEG framework

Advantages of aligning MGDC to MPEG

Promote knowledge transfer, and accountability

Improve risk management and process replicability

Thank you

Implementation of the Open Data Cube for Earth Observation in Mexico: Challenges and Prospects in Generating Statistical and Geographical Information

Dr. Abel Coronado

International Statistical Institute

Introduction to the Open Data Cube

- What is the Open Data Cube?
 - The Open Data Cube (ODC) is a freely accessible, open-source software that supports the management, access, and analysis of large volumes of Earth observation data.
- Importance of Earth Observation Data Management
 - Managing vast amounts of Earth observation data is crucial for monitoring environmental, socio-economic, and demographic phenomena. The Open Data Cube enables efficient data handling, facilitating advanced analysis and application development.

Open Data Cube (ODC) Architecture Overview

- **Satellite Image Provider**: Primary source of satellite imagery for data analysis.
- **Image Storage**: Local on-premises storage for securing and accessing image data.
- Index DB: Database for indexing and managing the stored images efficiently.
- **ODC Core**: Central Python-based component that processes, integrates various data sources, and supports custom scripting within the ODC environment.
- Analytical Tools:
 - Python Scripts: For automated data processing.
 - Jupyter Notebooks: For interactive data analysis and visualization.
 - Web Services and Command Line Tools: Interfaces for data access and management.

Ornelas; et al. (2019). Open Data Cube for Natural Resources Mapping in Mexico. In Proceedings of the 1st International Conference on Geospatial Information Sciences, Kalpa Publications in Computing, Volume 13, Pages 70–78.

Choosing Between On-Premises Open Data Cube and Cloud-Based Google Earth Engine

•Open Data Cube (ODC) - On-Premises Solution

•Control and Independence: Hosted locally for full data control.

•Customization: Open-source and adaptable to specific needs.

•Security and Continuity: Users manage their data with secure, consistent access.

•Scalability: Flexibly expands with resources, avoiding unexpected costs.

•Google Earth Engine (GEE) - Cloud-Based Solution

•Provider Reliance: Dependent on a single provider, which may limit flexibility.

•Data Access: Immediate access to extensive datasets and proprietary algorithms.

•Cloud Constraints: Encourages cloud storage, affecting data control; subject to usage quotas.

•Conclusion: Complementary Use of Both Systems

•Strategic Approach: Utilize ODC for control over sensitive and large-scale projects, and GEE for its rapid processing and broad dataset availability.

Overcoming Technical Challenges in the Implementation of ODC Mexico (2 Million Square Kilometers)

• Data Volume Management: Challenges in storage, processing, and ensuring efficient data access.

Key Milestones in INEGI's Open Data Cube Initiative

2018 - Geoscience Australia Workshop (Canberra, Australia)

 Five INEGI staff members received extensive training in the use and management of the Open Data Cube, with a focus on massive satellite data processing for advanced geospatial analysis.

2019 - Landsat Image Acquisition

Thanks to the efforts of Vice President Paloma Meriodio, INEGI received several terabytes of Landsat images from NASA and the USGS, covering all of Mexico from 1984 (nineteen eighty-four) to 2018 (two thousand eighteen). This extensive dataset initiated the production operation of the Open Data Cube in Mexico. Since then, we have regularly downloaded and updated this data to maintain a current and comprehensive archive.

- 2020 Publication of Geomedians
 - Annual and multi-year geomedians, covering periods with sparse data availability, were published for the years 1984 (nineteen eighty-four) to 2019 (two thousand nineteen). These geomedians are now updated annually to provide continuous insights.
 - A geomedian is a composite image created by taking the geometric median of pixel values over time, ensuring high-quality, cloud-free mosaics. This process combines multiple multiband images, masks clouds and shadows, and produces a consistent and clear view of the land surface.

• 2021 - ICASE Landsat

• Added the Surface Water Classification Index from Space (ICASE) for Landsat to the historical products, updated annually, enhancing water resource management and analysis.

C O

C O N

2022 - Publication of Annual NDVI Mosaics

Alongside the geomedians and ICASE, INEGI also started publishing annual NDVI mosaics, covering the period from 1984 (nineteen eighty-four) to 2021 (two thousand twenty-one). The NDVI (Normalized Difference Vegetation Index) mosaics provide a detailed view of vegetation health and density, enhancing our annual data releases.

The color scale ranges from -1.0 to 1.0. Green areas indicate healthy and dense vegetation. Yellow and orange areas show less dense or stressed vegetation. Red areas indicate little to no vegetation

2024 - Sentinel Image Indexing

Successfully indexed Sentinel images for all of Mexico (October 2022 to 2023), totaling 57TB (fifty-seven terabytes), corrected with Sen2Cor, and integrated into our data cube. Thanks to this, we have started a new project that goes beyond identifying agricultural activity to detecting specific crops using Sentinel-2 time series. This project began in January of this year and aims to enhance our agricultural analysis capabilities with advanced data science techniques.

Practical Applications of the Mexican Geospatial Data Cube (CDGM)

• **Remote Sensing for National Agricultural Boundaries:** Annual estimation of the agricultural frontier using machine learning models on Landsat and Sentinel images, enhancing the frequency and accuracy of agricultural production estimates traditionally based on the National Agricultural Survey and infrequent agricultural censuses.

Practical Applications of the Mexican Geospatial Data Cube (CDGM)

• Urban Growth and Rural Developments: Identification of new urban and rural developments through computational learning techniques, providing valuable insights for urban planning and rural development.

Lessons Learned and Future Directions

- Inception and Growth: Initially, CDGM started as an institutional research project involving multiple areas such as technology, geography, and research. It was incubated, addressing challenges related to enabling technology. With the institutional decision to maintain the cube on-premises, significant efforts were made to secure space and servers, highlighting the importance of infrastructure in its development.
- **Transition to Operational Status:** This year, CDGM has evolved from a research status to an official information program. The project has been transferred from the research area to the Geography department, marking its shift to a productive phase driven by the successful outcomes achieved to date.

Thank you

The Community and Individual Well-Being Interaction in Alternative Modelling Approaches

Wlodzimierz Okrasa Dominik Rozkrut Statistics Poland

International Statistical Institute

OUTLINE

INTRO: Background and problem

Measuring complex multidimensional phenomena over time

- rationale for *Multivariate Functional Principal Component Analysis/MFPCA*
 - o modelling dynamic phenomenon with MFPCA

Cross-level interaction of well-being measures

- comparison of MFPCA- and classic PCA- approaches
 - models of community and individual (macro- / micro-) relationships
 - multilevel modeling in spatial context
 - Iooking for causality structural modelling

Spatial aspects of cross-level well-being interaction

Conclusions

INTRO

This paper presents an empirical exploration of selected modeling approaches to assess interaction effect between community well-being and individual (household) well-being based on public statistics datasets. It aims to identify best fit for a specific analytical task, given the limitations of the availabile data because of the lack of a multi-source analytical database with a hierarchical (nested) data structure. And the reason is that the asessment of the interaction effect becomes vital from both methodological and (local) development policy standpoints. It is assumed here that clarification of such an entangled issue requires taking into account both temporal and spatial aspects of cross-level dynamics along with the relevant covariates.

The paper (presentation) is structured as follows: The first part is devoted to the the measurement issues with special attention paid to the functional data measurement approach. This approach is employed in the version of Multivariate Functional Principal Component Analysis (MFPCA) to deal with multidimensionality and temporality of community development (deprivation) and of individual subjective well-being, respectively. The FPCA is an extension of the classic principal component analysis PCA from vector data to functional data (Górecki et al., 2018, 2019) through characterizing units - (local community / commune) or individuals - in terms of many features observed in many time points and after a smoothing process by a vector of continuous functions (Okrasa, Krzyśko, Wołynski, 2020).

INTRO – cont.

The advantage of the MFPCA over the classic PCA is to obtain a projection of analyzed units into one or two dimensional subspaces using information for the whole period under study, and to divided them into homogenous groups on the basis of the resulting rankings. Having constructed classifications of both local communities (communes) and their residents for a given period of time (2004 – 2014 -2016, and 2009-2015, respectively), the spatial perspective can be involved in the further (third) section of the presentation. This is preceded by the two modeling approaches being employed to cover cross-level operating factors of well-being - the first one includes two-level regression model, and the second uses structural modelling approach in a search for causal-type mediating mechanisms.

The spatial perspective is explicitely involved in the third part of the presentation. The space and place-related effects of the community development (deprivation) on the resulting cross-categorization distribution of individuals are evaluated in terms of spatial patterns (autocorrelation and a tendency to clustering) and spatial dependence / spatial regression (Fischer M.M., Getis 2010; Cressie and Wikle, 2011). Some further extension toward multilevel modelling with spatial effect is considered but not included into the presentation (Okrasa and Rozkrut, 2018). Data used in these analyzes come from both administrative sources (Local Data Bank) and from surveys conducted by Statistics Poland (*Time Use Survey*) and BY an inter-university survey center (*Social Diagnosis*). An integrated Multiple-source Ananlytical Database (MAD) was constructed using geographic code for communes (*gminas*) as an integrator.

Key issues in analyzing the relationship between Community and Personal Well-Being: *measurement – data – models*

□ A well-being measure is presumed to be generated not only to satisfy formal requirements but primarily to guide policy, especially about local community development.

> Local Community: Any configuration of individuals, families, and groups whose values, characteristics, interests, geography, and/or social relations unite them in some way (e.g., Dreher, 2016) \rightarrow community is defined as the people living in a place such as a neighborhood.

Source: World Economic Forum, 2012. Global Agenda: Well-being and Global Success . P.5

Methodological framework for analyzing CWB and PWB:

- accounting for *micro macro interdependence*
 - → modelling multilevel relationships
- bringing *space* into the question /equation
 - \rightarrow spatial (dependence) analysis.
- **Modelling multilevel** *relationships* two types of strategies:
 - cross-level *interaction*-focused approach:
 - decomposition of variance into within groups/differences among individuals in community (level -1) and between groups (level-2) reflecting differences across comunities;
 - → models for hierarchically structured data risk of 'ecological fallacy' (Goldstein, 2003(2010); Subramanian, 2009; Sampson 2003)
 - *structural modelling* of (causal) mediation mechanisms:
 - decomposing total effect of the independent ('treatment') variable into the natural direct and indirect effects (Hong, 2015).

Multidimensional measures of well-being - dimensionalization / operationalization according to PCA and FD-PCA - some comparisons

Multiple-source Analytical Database /ADB

Local Deprivation and Subjective Well-Being (SWB)

Data from:

- (i) measures of local community (communes) development and the relevant covariates are from public statistics: Local Data Bank /LDB -Statistics Poland (years 2004, 2008, 2010, 2012, 2014, 2016); NUTS5/LAU2; (N = 2 478 commues / gminas)
- (ii) subjective well-being measures base on data from nation-wide surveys:

(a) Social Diagnosis /SD curried out in every other year (2003-2005 -...- 2015) and (b) Time Use Survey / TUS 2013, Statistics Poland).

Multiple-source Analytical Database / MAD – bottom-up data integration, with territorial code (KODTERYT) for the commune/municipality (an 'anchore')

Measuring local deprivation and personal well-being

- Multidimensional Index of Local Deprivation (MILD)
 - (i) Classic version: *Confirmatory* Factor Analysis / PCA (single-factor)
 - (ii) *Functional* Principal Component Analysis (FPCA)

Eleven (pre-selected) domains of deprivation - each characterized by a number of original items: *ecology – finance – economy – infrastructure – municipal utilities – culture – housing – social assistance – labour market – education – health* [altogether 67 items]

Personal Subjective Well-being/SWB and Community Subjective Well-being CSWB

- SWB: individual subjective measure based on *Social Diagnosis,* using FPCA
- SWB: individual quasi-objective *Time Use Survey* (one-off survey data) ;
- CSWB: compositional subjective: self-reported satisfaction with selected aspects of life (Social Diagnosis)

Functional Data version of the Principal Component Analyzis

- The employed functional data measurement approach in the version of the *Multivariate Functional Principal Component Analysis (MFPCA)* - is an extension of the classic principal component analysis PCA from <u>vector data</u> to <u>functional data</u> (Gorecki et al., 2018, 2019) with the procedure of representing data by function or curves (see Ramsay and Silverman, 2005) developed on the Besse's (1979) theoretical idea of multivariate data – where random variables take values in general Hilbert space - and its further important developments in different contexts. Of special interest here is an application to factorial methods - principal component analysis, canonical analysis - by Saporta (1981), and by Jacques and Preda (2014), who demonstrated usefulness of combining the MFPCA with **cluster analysis**.
 - The advantage of the FPCA over the classic PCA is to obtain a projection of analyzed units into one or two dimensional subspaces using information for the whole period under study, and to divide them into homogenous groups on the basis of the resulting rankings.
 - Having constructed classifications of both local communities (communes) and their residents for a given period of time (2004 – 2014, 2016, and 2009-2015, respectively), the spatial perspective is involved in the second part of the presentation (Okrasa, Krzyśko, Wołynski, 2020).

MFPCA - cont

We assume that the analyzed objects characterized by variables are observed in many time points (years, months, days). Therefore, an appropriate model describing the examined objects will be *p*- dimensional random process

$$\boldsymbol{X}(t) = (X_1(t), \dots, X_p(t))^\top \ t \in I$$

Assume also that $X(t) \in L_2^p(I)$ where $L_2(I)$ is a Hilbert space of integrable functions with a square on the interval I, and that the expected value of the process

$$\mathbf{E}(\mathbf{X}(t)) = \mathbf{0} \quad t \in I$$

From the above it follows that each component of the process can be represented in the following form: ∞

$$X_k(t) = \sum_{b=0}^{\infty} \alpha_{kb} \varphi_b(t), \ t \in I,$$

where in the functions $\varphi_1, \varphi_2, \cdots$ form a base in space

FPCA – cont.

$$X_k(t) = \sum_{b=0}^{B_k} \alpha_{kb} \varphi_b(t), \ t \in I,$$

where the number B_k determines the degree of smoothness of the function $X_k(t)$ (the smaller the value B_k , the greater the degree of smoothing). Similarly to the classical case, we are looking for a random

variable (the first functional component) U of the form:

having the maximum variance for all
$$oldsymbol{u}(t)\in L^p_2(I)$$
; (u, u)=1.

In general, the k-th functional main component fulfills the conditions:

$$U = \langle \boldsymbol{u}, \boldsymbol{X} \rangle = \int_{I} \boldsymbol{u}(t)^{\mathsf{T}} \boldsymbol{X}(t) dt$$

$$\lambda_k = \sup_{\mathbf{u} \in L_2^p(I)} \operatorname{Var}(\langle \mathbf{u}, \mathbf{X} \rangle) = \operatorname{Var}(\langle \mathbf{u}_k, \mathbf{X} \rangle), \quad \langle \mathbf{u}_{\kappa_1}, \mathbf{u}_{\kappa_2} \rangle = \delta_{\kappa_1 \kappa_2}, \quad \kappa_1, \kappa_2 = 1, 2, \dots, k.$$

In the functional case, we have:

$$\langle \mathbf{u}_k, \mathbf{u}_k \rangle = \int_I u_{k1}^2(t) + u_{k2}^2(t) + \dots + u_{kp}^2(t)dt = 1$$

Thus, the quantity $\int_{I} |u_{kj}(t)| dt$ is a measure of the contribution of *j*-th component of the random process to the construction *k*-th functional principal component.

Since this process is only observed in a finite number of time moments, it is necessary to transform (smooth) discrete data into functional data (for details, see Ramsay and Silverman (2005); Gorecki, Krzysko, Wolynski (2019).

Comparison of local deprivation measures according to by classic PCA and the FPCA

FD_Index of Local Deprivation/FD_MILD by domains (2004-2016)

Influence of *local risk* associated with particular domains of local deprivation on selected measures of *satisfaction with ...*

The *synthetic measure of satisfaction (SMS)* – as an indicator of overll subjective well-being attributed to commune as a place of residents ('compositional' variable: percentage of 'satsfied' or 'very satisfied' on each scale) - is composed of the following five separate scales:

- (i) satisfaction with *living conditions*,
- (ii) satisfaction with *living environment*,
- (iii)satisfaction with social and family relations,
- (iv) satisfaction with *personal situation*, and
- (v) *disapproval of antisocial* behavior.

• Local Risk is defined as a product of a FD-scale of local deprivation in a domain and the respective fraction of the commune population (P_k) defined through the ratio of the domain deprivation (ILD_d –Index of Local Deprivatio) to the total size of deprivation (MILD):

RiskFD_(domain) = FD-deprivation (d-domain) x (P_k * (ILD_d / MILD)).

Individual (subjective/quasi-objective) **well-being:** *Time Use Survey* data-based measures

- Social indicators approach attempts to exploit TUS data (Juster; and others. e.g. Andrews 80s.); in economics (macro-indicators, Becker 1965; Nordhaus, 2009; micro-level: Kahneman and Krueger, 2006); (also used in poverty research – eg., gender effect).
 - Survey research (day reconstruction method/DRM –Statistics Poland: TUS_2013; N=23 000)
- Econometric research and econometric/psychometric combined approaches Krueger and Khaneman et al.. (2008) – indicator of emotion / negative /positive affects associated with a performed activity / 'time of unpleasant state' - U-index :

$$U_i = Σ_j I_{ij} h_{ij} / Σ_j h_{ij}$$
 (TUS₂₀₁₃: I = -1. 0. +1)

- and $\mathbf{U} = \Sigma_i (\Sigma_i I_{ii} h_{ii} / \Sigma_i h_{ii}) / \mathbf{N}$ for N-persons / group in population ; For U-binary (-1 & 0 vs. +1), odds of U [chance of other than 'pleasant' or non-positive state vs. 'pleasant']:
 - Odds (U) :: $U_i / (1 U_i) \rightarrow Odds U$ by the community level FD-measures of deprivation/development and by its selected characteristics 15

Effects of local deprivation and of risk associated with local deprivation (selected domains) - in Fnctional Data version) - and of the local community characterisitcs for individual well-being (odds of U-'unpleasant')

(average for a commune's residents in the TUS sample; min. 10 pers. per comm.)

	Unstandardized Coefficients		Standard. Coeff.		
Model	В	Std. Error	Beta	t	Sig.
• (Constant)	0,494	0,209		2,364	0,018
 FD_Local Deprivation (development) (2004_16) 	0,000	0,000	-0,092	-2,204	0,028
 Risk assoc. w/depr. labor market 	-0,073	0,021	-0,211	-3,542	0,000
 Risk assoc. w/depr. loc.economy 	0,080	0,027	0,214	2,987	0,003
 Temporarily absent (from home / per 1000 pers) 	0,004	0,002	0,071	1,979	0,048
 Proportion of 'employed' to 'not- employed' 	-0,054	0,010	-0,175	-5,631	0,000
 Number of NGOs per 1000 pers 	-0,017	0,011	-0,049	-1,534	0,125
 Local authority active in revitalization 	0,069	0,026	0,085	2,715	16 0,007
$F(7, 1012) = 9.7.842 \cdot n < 0.000$					

Cross-level operating factors of individual and community well-being:

macro - micro influence

Assessing cross-level interaction between personal and community well-being – a basic model (e.g., Subramanian. 2010)

- **y**_{ij}; well-being of *i* individual in *j*th commune/gmin ;
- x_{1ij} predictor of indywidual (level-1) such as: income, age, education, or satisfaction (e.g., with life in a community, family life, etc.
- predictor of level-2 / (macro-level): Multideminsonal Index of Local Deprivation for jth commune (gmina) /MILD_i

Model for level-1:

$$y_{ij} = \beta_{0j} + \beta_1 x_{1ij} + e_{0ij}$$

where:
 θ_{0j} – refers to x_{0ij} average score on a well-being scale in j-th commune/gmina (eg., . 'less affluent' or 'low-income', < Me, x_{0ij} =1);

 β_{I} – average differentiation of individual well-being associated with individual material status , (x_{1ij}) , across all communes; e_{0ij} – residual term for the level-1.

Treating β_{0j} as random variable: $(\beta_{0j} - \beta_0) + u_{0j}$, where u_{0j} is locally-specific associated with average value of β_0) for a specified group (eg. less satisfied with a community) and grouping them into fixed and random components ($e_{0ij} + u_{0i}$) we obtain variance component model or random-intercept model:

$$y_{ij} = \beta_0 + \beta_1 x_{1ij} + (e_{0ij} + u_{0j})$$

Modeling *fixed-effect* we include a level-2 predictor – MILD -(index of local deprivation) along with individual characteristics, including *interaction* term between the two levels :

 $\beta_{0j} = \beta_0 + \alpha_1 MILD_{1j} + u_{0j}$ and $\beta_{1j} = \beta_1 + \alpha_2 MILD_{1j} + u_{1j}$

$$y_{ij} = \beta_0 + \beta_1 x_{1ij} + \alpha_1 w_{1j} + \alpha_2 w_{1j} x_{1ij} + (u_{0j} + u_{1j} x_{1ij} + e_{1ij} x_{1ij} + e_{2ij} x_{2ij})$$

- where w_{1i} is a 2-level predictor. i.e. the index of local deprivation. $MILD_{1i}$.

The following model was calculated using data from *Time Use Survey* 2013 (22 695):

$$\begin{aligned} & IWB(U-iincome_{ij} + \boldsymbol{\alpha}_{1}MILD_{j} + \boldsymbol{\alpha}_{21}income_{ij} * MILD_{j} + \boldsymbol{\alpha}_{21}income_{ij} * MILD_{j} + \boldsymbol{\alpha}_{21}income_{ij} * MILD_{j} + \boldsymbol{\alpha}_{21}income_{ij} * MILD_{j} + \boldsymbol{\alpha}_{21}income_{ij} + \boldsymbol$$

[It is assumed that] Such a specification of cross-level (between individual and community/gmina measures of well-being) with i*nteraction* effect should ensure robust estimation (e.g., Subramanian, op. cit., p. 521; Hox et al., 2018).

Multilevel regression of personal well-being – *U-index* (all activities) – on individual and commune charactersitics with cross-level interaction term; comparison of *Functional Data*-based and *classic PCA* approaches

Model with FDPCA- measures (MILDevelopment)	Std Beta	t	Model with classic PCA- measures (MILDeprivation)	Std Beta	t
Constant		13,258	Constant		5,096
Income	0,056**	6,901	Income	0,027**	4,050
Education (years of schooling)	0,075**	4,728	Education (years of schooling)	-0,045	-0,610
FD_Community Development 2004-2014	0,082*	2,304	Community Deprivation 2004-2014	-0,062*	-2,133
FD_Education *Community Development	-0,111**	-2,737	Education*Community Deprivation	0,123*	1,668
FD_Comm. Dvpt * Income	0,152**	17,778	Comm. Depriv.* Income	0,091**	13,547
F(5 15086) = 100 418 (p < 001)			F(5 22690) =	= 87 196 (n	< 001)

**. significant at p < 0.01 and * at p < 0.05.

Strong similarity of results obtained with FDPCA and PCA, respectively - with a more clear pattern of dependences in the first case - confirms the (expected) dvantage of the former mainly for interpretation and result presentation purposes.

Models type II:

Structural modelling approach - *causal* mediating mechanisms: local deprivation as a factor modifying effect of an individual commune's attribute on the residences' well-being according to U-index

- Hhld Income indpendent var. / 'treatment'
- Local deprivation / MILD *mediating* factor

Hypothesis: The level of deprivation of a commune (gmina) affects the influence of the residents' subjective well-being by their material status (income) [structural modeling (e.g. G. Hong. 2015)]:

- Y U-index (individual well-being)
- Z source of influence: HH income (average in a commune/gmina)
- M *mediator*: level of local deprivation /MILD_2014

$$M = \gamma_0 + aZ + \varepsilon_M$$
$$Y = \beta_0 + bM + cZ + \varepsilon_M$$

Substituting for M \rightarrow reduced-form model:

$$Y = (\dots) = \beta'_0 + c'Z + \varepsilon'_Y$$

Estimation of diffrences between coefficients of ifluence c' - c (with local deprivation/MILD as a mediator) allows to assess indirect effect (of MILD) in estimating influence of Hhld income on individual well-being (U)

Structural (*causal*-type) modelling:

quality of living environment(*ILD*-selected domains) as a moderating factor in assessing influence of respondents' income on subjective well-being

	Standardized (Difference	
Model / predictors	Beta	t-statistics	(c'- c)
Dej	pendent Var: U-index	x for all activities	
M I: ILD_economy	054	-1.565	
Monthly income/ Mi (c')	.072 *	2.070	0.304
ILD_economy on Mi(c)	358 **	-11.807	
M II: ILD_social assistance	091 **	-2.824	
Monthly income /Mi (c')	111 **	-3.439	0.013
ILD_soc asst. on Mi (c)	104 **	-3.214	
M III: ILD_labor market	089 **	-2.725	
Monthly income /Mi	061 *	-1.850	0.065
ILD_labor market on Mi (c)	154 **	-4.802	
M IV: ILD_health	.054	1.638	
Monthly income /Mi (c')	070 *	-2.137	0.108
ILD_health on Mi (c)	178 **	-5.583	

The level of repondent income modifies the impact of local deprivation(MILD) - selected domains/ILD - on individual (subjective) well-being significanty.

Spatial aspects of between-level relationship (spatial heterogeneity)

Two-step spatial analysis:

(1) Checking a tendency to clustering among 'spatial units' (communes/gminas) with respect to selected measures – subjective and objective – using Moran' I (global):

$$I = \frac{n}{W} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - \bar{x}) (x_j - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

where: $x_i \cdot x_j \cdot x_i$ - values of a measure at each location; **W** is the spatial weights matrix.

(2) Estimation of the spatial regression model parameters: (notation for individual/commune observation *i*): $y_i = \rho \sum_{j=1}^{n} W_{ij} y_j + \sum_{r=1}^{k} X_{ir} \beta_r + \sum_{j=1}^{k} W_{j} y_j + \sum_{r=1}^{k} X_{ir} \beta_r + \sum_$

<u>where</u>: y_i – the dependent variable for observation i; $X_{ir} k$ – explanatory variables r = 1. ... k with associated coefficient β_r ; W matrix; ρ is parameter of the strength of the average association between the dependent variable for region /observations and the average of them for their neighbours; ε_i is the disturbance term – it might be assumed that ε_i is meant as either the **spatially lagged** term or **spatial error** formulation ((eg., LeSage and Pace, 2010).

(LISA:) Scatter plots and cluster maps of local deprivation acc. to: (a) FD_MILD₂₀₀₄₋₂₀₁₆ (M's I: 0.36); and (b) MILD₂₀₁₆ (M's i: 0.39) - comparison

Cluster maps and scatter plots of deprivation / 'development' in the domains of (a) *local social welfare* by FD-measure (2004-16) and FA-classic and (b) *local labour market by* FD-measure and FA.

Strong autocorrelation and clear pattern of spatial clusters in each of the two domains – local social welfare and labour market – provide case for interpretation of the above relationships between risk associated with FDPCA-measure and 'classic' PCA measure, (a.1&a.3, and b1&b.3, respectively): the patterns are similar (but inverted values suggests different interpretation - 'development' ('1') vs. deprivation ('3').

SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION (FD-measures) <u>Dependent</u> -- Subjective well-being

All scales – SMS/Synthetic Measure of Satisfaction (N 352)

Variable	Coefficient	t Std.Error	z-value	Probability		
CONSTANT	6.58928	4.69413	1.40373	0.16040		
RiskFD_LabMkt	1.05379	0.470991	2.2374	0.02526		
RiskFD_Economy	-1.4603	0.542753	-2.69055	0.00713		
Subsidies FD_2016pc	0.000735	0.001080	0.68092	0.49592		
NGOs per 1000_2016	-0.46272	0.2308	-2.00488	0.04498		
Comm. w/revitalizatior	n 0.18080	0.381625	0.473771	0.63566		
Migration_balance	0.04184	0.041461	1.00924	0.31286		
LAMBDA	0.16678 0.0	0560501 2.97	2569 0.002	.92		
AGNOSTICS FOR HETEROSKEDASTICITY						

TEST	DF	VALUE	PROB	
Breusch-Pagan test	6	36.8021	0.00000	
SPATIAL ERROR DEPENDENCE	FOR	WEIGHT MAT	RIX : BDR_04_16_Juneo5_2019	
TEST	DF	VALUE	PROB	
Likelihood Ratio Test	1	8.4296	0.00369	

SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION (FD-measures) Dependent: Satisfaction with personal situation (N 352)

Variable	Coeffi	cient	Std.Error	z-value	Probability
CONSTANT	2.904	449	3.33088	0.87198	0.38321
RiskFD_LabMkt	0.630)598	0.329713	1.91256	0.05580
RiskFD_Economy	-0.74	7787	0.381996	-1.95758	0.05028
Subsidies FD_2016pd	c 1.713	33e-05	0.0007664	0.022345	0.98217
NGOs per 1000_201	6 -0.26	2531	0.16303	-1.61032	0.10733
Comm. w/revitalizati	ion 0.00	9240	0.26974	0.03425	0.97267
Migration_balance	-0.00	8147	0.029267	-0.27837	0.78072
LAMBDA	0.132	998 0.	.056856	2.3392 0	.01933
DIAGNOSTICS FOR HETEF	ROSKEDAS	ΤΙΟΙΤΥ			
TEST	DF	VALUE	PROB		
Breusch-Pagan test	6	30.3470	0.00003		
TEST	DF	VALUE	PROB		
Likelihood Ratio Test	1	4.9045	0.02679		

CONCLUSIONS

Following the conceptualization of the triadic interdependence of data, measurement, and model, some observations seem worth mentioning in light of the presented empirical results:

Bottom-up, data-driven approach to constructing Analytical Data Base encompassing individual and group/commune variables, seems to provide an alternative to the lacking appropriate (nested) data structure in analyzing cross-level relationship between the respective (development and well-being measures), within a multidimensional framework.

▶ Functional Data approach to multidimensional measurement of community well-being (i.e., switching from PCA to FPCA), as well as to selected measures of subjective well-being, allows on the one side, to utilize information on long-term process of local development and, on the other, to expand the analysis towards employing a spatio-temporal frameworek, while clarifying the between individual (micro) and commune (macro) level relationsips.

▶ In consequence of involving dynamic aspect of the local development process (due to using FDapproach) in the analysis of its influence on the residents' personal well-being both planning and resource allocation policies become better informed and, expectedly, more effective (for instance, a given level of individual well-being can be achieved at a lower level of input with such an additional information than

otherwise).

References

Fischer M.M., Getis A. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Springer.

Górecki T., Krzyśko M., Wołyński W., 2019. Variable Selection in Multivariate Functional Data Classification. Statistics in Transition ne series. Vol. 20 (2), pp123-138.

Hong G. 2015. Causality in a Social World: Moderation. Mediation and Spill-over. Wiley.

Hox J. J., Moerbeek M., Schoot R., van de. 2018. Multilevel Analysis: Techniques and Applications. 3rd ed., New York, Routledge.

Kalton G., Mackie Ch., Okrasa W.,(eds.) 2015. The Measurement of Subjective Well-Being in Survey Research. Statistics in Transition new series. Vol. 16. 3

Kim Y., Ludwigs K., 2017, Measuring Community Well-Being and Individual Well-Being for Public Policy: The Case of thr Community Well-Being Atlas, in: R. Phillips, C. Wang, (ed.), *Handbook Of Community Well-Being Reseach*. Springer.

Krueger A. B., Kahneman D., Schkade_D.A., Schwartz N., Stone A., 2009. *National Time Accounting: The Currency of Life,* in : A. B. Krueger (ed), Measuring Subjective Well-Being of Nations: National Account of Time Use and Well-Being. University of Chicago Press.

References

- LeSage J P., Pace R.K., 2010. Spatial Econometrics. [in] Fischer and Getis (2010)
- OECD 2013. OECD Guidelines on Measuring Subjective Well-being, OECD Publishing.
- Okrasa, W., Krzyśko, M., Wołyński, W., 2020. Spatio-temporal aspects of community well-being in Multivariate Functional Data approach. [in] C.H. Skiadas, C. Skiadas (eds.), Demogrphy of Population Health, Aging and Health Expenditures, The Springer Series on Demographic Methods and Population Analysis 50 (pp.251-273)
- Okrasa W., Rozkrut D., 2018. The Time Use Data-based Measures of the Wellbeing Effect of Community Development. Proceedings of the 2018 Federal Committee on Statistical Methodology (FCSM) Research Conference.
- Okrasa W., Rozkrut D., 2018. Modelling for Improving Measurement: Strategies for Contextualization of Well-Being IAOS2018_OECD Conference *Better Statistics for Better Lives*. Paris, Sept. 19-21.
- Phillips R., and Wong C, 2017. Handbook of Community Well-Being Research, Springer.
- Stauer N., Marks N., 2009. Local Wellbeing. Can We Measure it.? <u>https://youngfoundation.org/wp-</u> content/uploads/2013
- Subramanian S.V., 2010. Multilevel Modeling [in] Fischer M.M., Getis A., Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Springer

Thank you

ASSESSING DESERTIFICATION AND VEGETATION LOSS IN NATURAL PROTECTED AREAS OF NORTHERN MEXICO

RANYART RODRIGO SUAREZ PONCE DE LEON

International Statistical Institute

Introduction

Importance

- The importance of quantifying the undeniable changes present in the environment (global warming)
- The need to develop strategies that provide solutions to the United Nations Sustainable Development Goals SDG (15.3.1)
- The opportunity to evaluate established public policies for environmental protection (i.e., Natural Protected Areas)

Goals

Asses vegetation loss for northern Mexico using Natural Protected Areas as the study regions.

- Integrate different sources of geospatial information to enhance the analysis.
- Generate information to aid in tracking progress on SDG 15.3.1 and improve decision-making.
- Evaluate human impact on the environment.

Data Sources

TEXT 1

TEXT 1

TEXT 1

Land Cover data provided by the ESA and mapped to UNCCD INEGI's vegetation data rasterized and mapped to UNCCD Precipitation data gathererd by weather stations

ESA-CCI LC

No data Cropland, rainfed Cropland irrigated / post-flooding Mosaic cropland / vegetation Mosaic vegetation / cropland Tree broadleaved evergreen Tree broadleaved deciduous Tree needleleaved evergreen Tree needleleaved deciduous Tree mixed leaf type Mosaic tree, shrub / HC Mosaic HC / tree, shrub Shrubland Grassland Lichens and mosses Sparse vegetation Tree flooded, fresh water Tree flooded, saline water Shrub or herbaceous flooded Urban areas Bare areas

22 classes

INEGI vegetation series

- Series I (1992) 9 classes
- Series VII (2018) 189 classes

Methodology

Rasterization

Land Cover Mapping

ESA-CCI 22 Classes

INEGI series 9-189 Classes

UNCCD 7 Classes

})

Clipping to ROIs

Trends.Earth

- Trends.Earth is a platform to monitor land cover and land use change using earth observations
- Open source and installs by plugin for Qgis
- Uses data from European Spatial Agency (ESA) and cloud computing in Google Earth Engine (GEE)
- Developed to help developing countries meet UN 2030 agenda (SDGs)

Trends.Earth

Data

Data Pre-processing

Trends.Earth LC change

0

0

0

0

..........

Google Earth Engine

	Land cover change by cover							
	Baseline area (sq. km)	Target area (sq. km)	Change in area (sq. km)	Change in area (percent)				
Tree-covered areas	2.08	5.58	3.51	168.99%				
Grasslands	24,760.25	24,156.70	-603.55	-2.44%				
Croplands	41.00	67.02	26.02	63.47%				
Wetlands	0.00	0.00	0.00	#;DIV/0!				
Artificial areas	0.00	5.06	5.06	#iDIV/0!				
Other lands	61.59	867.69	806.11	1308.93%				
Water bodies	244.83	7.69	-237.15	-96.86%				

RESULTS

Summary of cl	hange in land	d cover
	Area (sq km)	Percent of total land area
Total land area:	24,858.2	100.00%
Land area with improved land cover:	35.8	0.14%
Land area with stable land cover:	23,913.7	96.20%
Land area with degraded land cover:	908.8	3.66%
Land area with no data for land cover:	0.0	0.00%

Results

Regions of Interest

Área Natural Protegida (ANP)	
Cuatrociénegas	
Gran Desierto de Altar	
Alto Golfo de California	
Janos	
Maderas del Carmen	
Médanos de Samalayuca	
Pabellón de Arteaga	
San Pedro	
Santa Elena	
Sierra la Laguna	
Valle de los Cirios	
El Vizcaíno	

Comparison between ESA and INEGI

	Resolución						
	ESA-CII 300m			INEGI-Serie 300m			
ANP	Mejorando	Estable	Degradación	Mejorando	Estable	Degradación	
Alto Golfo de California	0.02%	96.73%	2.11%	2.01%	72.91%	24.09%	
Cuatrociénegas	3.27%	95.41%	0.20%	0.82%	90.43%	7.48%	
Desierto de Altar	0.63%	98.46%	0.87%	0.0%	46.83%	53.07%	
El Vizcaíno	0.02%	99.17%	0.46%	1.12%	80.46%	18.07%	
Janos	0.32%	97.04%	2.28%	4.94%	87.76%	7.01%	
Maderas del Carmen	2.49%	95.86%	1.05%	20.39%	76.23%	2.97%	
Médanos de Samalayuca	0 %	99.06%	0.20%	0.0%	36.66%	62.6%	
Pabellón	0.32%	95.96%	1.88%	13.12%	64.21%	21.31%	
San Pedro	0.18%	97.64%	0.70%	7.39%	82.3%	8.96%	
Santa Elena	0.26%	99.19%	0.03%	1.15%	94.9%	3.46%	
Sierra la Laguna	5.36%	93.68%	0.13%	12.27%	84.47%	2.51%	
Valle de los Cirios	0.07%	99.31%	0.42%	0.16%	95.46%	4.19%	

INEGI data sources

				I	Resolución				
300m				30m (LandSat)			10m (Sentinel)		
ANP	Mejorando	Estable	Degradación	Mejorando	Estable	Degradación	Mejorando	Estable	Degradació
Alto Golfo de California	2.01%	72.91%	24.09%	2.66%	75.63%	21.71%	2.67%	75.64%	21.69%
Cuatrociénegas	0.82%	90.43%	7.48%	0.96%	92.51%	6.53%	0.97%	92.58%	6.45%
Desierto de Altar	0.0%	46.83%	53.07%	0.03%	47.67%	52.28%	0.03%	47.73%	52.24%
El Vizcaíno	1.12%	80.46%	18.07%	1.05%	82.03%	16.89%	1.05%	82.15%	16.8%
Janos	4.94%	87.76%%	7.01%	5.24%	86.53%	8.23%	5.27%	86.42%	8.31%
Maderas del Carmen	20.39%	76.23%	2.97%	24.03%	73.99%	1.94%	24.34%	73.78%	1.86%
Médanos de Samalayuca	0.0%	36.66%	62.6%	0.0%	42.5%	57.5%	0.0%	42.92%	57.08%
Pabellón	13.12%	64.21%	21.31%	17.43%	64.13%	18.28%	17.77%	64.15%	18.07%
San Pedro	7.39%	82.3%	8.96%	8.69%	81.34%	9.94%	8.67%	81.41%	9.92%
Santa Elena	1.15%	94.9%	3.46%	1.19%	95.46%	3.28%	1.2%	95.53%	3.27%
Sierra la Laguna	12.27%	84.47%	2.51%	12.36%	85.92%	1.64%	12.39%	86.02%	1.59%
Valle de los Cirios	0.16%	95.46%	4.19%	0.14%	96.15%	3.7%	0.14%	96.2%	3.66%

Conclusions

- Degradation/Desertification found for some ANP
- Results vary greatly depending on the data source used
- Spatial resolution can be changed for INEGI data source
- Comparability and replicability is assured using trends.earth
- INEGI data source can be extendend with experts in LC definitions

Thank you

