

New methods and data sources for official statistics

Instructions: Click on the link to access each author's presentation.

Chair: Tobias Thomas

Participants:

<u>Alejandro Ruiz:</u> Social and economic indicators from transactional banking data

Linda J. Young: Using New Technologies to Leverage Alternative Data in the Production of Official Statistics

Tomas Rudys: The use of scanner data in official statistics

<u>Peter Knizat:</u> Nowcasting industrial production index with high-frequeny highway toll data

Generation of Economic and Social Indicators from Banking Transactions.

Alejandro Ruiz Researcher

The information contained in this presentation is not part of the official statistics of INEGI. Opinions and comments attributed solely to the researcher and do not necessarily reflect an institutional stance.

International Statistical Institute

Challenge we face

- » We, as NSO, face the challenge of collecting sensitive information, such as personal income or expenditure data.
- Income and expenditure data is important for public policy well-being, labor market, fiscal policy—.
 - > National Survey of Household Income and Expenditure (ENIGH).
 - > National Survey of Occupation and Employment (ENOE).

However...

- > Misreporting.
- > Undercoverage.
- > The data is not recalled properly.
- > There is a growing demand for more disaggregated, timely, and frequent information.

Public-Private partnerships for leveraging privately held data

Bilateral agreements: BANORTE, BBVA & SANTANDER

- Currently, at the state level, we can know how households are faring in terms of their economic well-being every two years. For the 2 469 municipalities , we can only access income information every five years, with no expenditure/consumption data.
- Now, for some subpopulation, we will have public, frequent, and quality municipality information on their economic well-being.
- There is no economic or in-kind compensation.

Transactional data sets

- Workers & retirees.
- Salaries, bonuses (Christmas bonuses & profit-sharing), severance pay.
- Debit and credit card transactions:
 1) Purchases.
 - 2) ATM cash withdrawals.
- On-line and In-person.
- Debit and credit card.
- On-line and In-person .

Expenditure

Payroll

Sales

Statistics based on Payroll Transactions

Henceforth *payroll-disbursed income* = *income*

Payroll

Monthly data on 18 million clients Statistics based on sex and age group:

- National,
- 32 states,
- 2 400 municipalities.

Statistics are calculated within the bank's servers There is no transfer of personal information.

Who is represented in the data?

Official data sources: 41 million wage and salaried workers + retirees 24 million have a bank account. Most of them also have access to healthcare services (proxy for formal labor market \approx half of the total labor market).

Monthly income

Average monthly income per bank-client = 15 000 (880 dollars, 1 dollar = 17 pesos)

Regular income + Christmas bonuses

Monthly payroll dispersion

+

- This computational process is carried out on the bank's servers.
- INEGI receives the decile averages from each bank.
- The decile averages that would be made public result from a weighted average.

This data can contribute to the discussion of relevant topics:

- 1. Gender Income Gap.
- 2. Dynamics of the formal labor market by age group.
- 3. Poverty measurement.

Gender gaps

Gender income gap*

Monthly average payroll for women, by municipality.

Pesos

Gender gap in one of the richest municipality. Decile X.

Dynamics by age group

Growth in number by age group:

		ENOE	
Age group	Bank clients	Workers in formal	Workers in formal and
		sector + retirees	informal sector + retirees
24 or younger	-6%	-5%	0%
25 a 34	4%	6%	5%
35 a 44	6%	4%	3%
45 a 54	10%	12%	8%
55 a 64	15%	15%	10%
65+	30%	23%	14%

Regions experiencing an increase or decrease of the youngest. 2022 vs 2019

Poverty measurement

Formal sector share.

c e

Coverage rate, 2020.*

SE,

Poverty rates based on official data, 2020.*

SE,

Poverty rate

Correlation -0.8 R² 0.79 (controlling by state)

To wrap up

Monthly statistics on payroll dispersion:

- > Dynamics in the number of people receiving payroll.
- > Average payroll and average payroll by decile.

- National
- 31 States + CDMX
- More than 700 municipalities or regions.

What is next

- > Publishing payroll information.
 - Talking to stakeholders.
- > We will try to strength this project by:
 - Reinforcing the importance of this collaboration with the current banks = Long-term relationship.
 - Add more financial institutions.
- > We will be working on expenditure data.

Thank you

jose.ruizs@inegi.org.mx

Using New Technologies to Leverage Alternative Data in the Production of Official Statistics

Linda J. Young USDA National Agricultural Statistics Service (NASS) May 17, 2024

International Statistical Institute

Outline

- Motivation for using all (survey and non-survey) data
- Alternative (non-survey data)
- List building
- Data collection
- Editing
- Estimation
- Final thoughts

The findings and conclusions in this presentation are those of the authors and should not be construed to represent any official USDA or U.S. Government determination or policy.

Why Turn to Non-Survey Data?

- Increasing demands for more official statistics
 - More often
 - Finer geospatial scales
 - Increasing response burden
- Decreasing list coverage
- Declining response rates

Question: What can be done to alleviate these concerns?

Alternative (Non-survey) Data

Farm Service Agency (FSA) Form FSA-578

- Completed by all producers participating in a USDA program for that crop season
- Information for each Common Land Unit
 - Crops
 - Acreage
 - Irrigation
- Variable coverage for crops and states, but high in major corn states
- Provides lower bound for acreages planted to a crop within a county

Common Land Units (CLUs)

https://www.agridatainc.com/Home/Prod ucts/Mapping%20Features/Land%20Res ource%20Intelligence/FSA%20Field%20B oundaries%20(CLU) 5

Cropland Data Layer (CDL)

6

Predictive Cropland Data Layers and Entropy Layers

Illinois (2021) PCDL and Segments Illinois (2021) Entropy Layer

7
Crop Sequence Boundaries (CSBs)

An agricultural field managed over time

- Uses historic Cropland Data Layers
 - Based on 8-year historic panels
 - Uses U.S. Census TIGER roads & rails features
- Created in Google Earth Engine (GEE) and ArcGIS
- Data products correspond with CDL availability
 - Contiguous U.S. 2008-2023
- Product is in both polygon and raster (grid/pixel) file
- Joint effort with USDA Economic Research Agency

Applications Leveraging All Data

Leveraging All Data to Identify List Frame Undercoverage

- FSA data have been used to identify farms for the NASS list frame
- Challenge: accounting for non-FSA farms
- Approach
 - Overlay the CSBs on the most recent Cropland Data Layer
 - Identify all CSBs associated with cropland
 - Identify the CSBs with cropland that do not have FSA data
 - Assess the farm status of all CSBs with cropland, not on the NASS list frame, and without FSA data
- Results vary by state
- Identifying livestock operations more challenging
 - Few USDA programs related to livestock → Limited FSA data
 - Small to mid-size operations difficult to identify using satellite imagery

Identifying Farms Not on the NASS List Frame

Using Non-Survey Data to Complete Surveys

June Area Survey (JAS) is conducted annually in June

- **Frame:** All land in U.S. provides a complete frame assuming accurate screening
- **Sample Unit:** A segment, which is typically a 1-square mile area of ~640 acres (~259 hectares)

Segments divided into tracts, representing unique operations

Design: Stratified Random Sample of segments, strata based on percent cultivated (>50%, 15%-50%, < 15%)

20% of the sample enters each year and remains for 5 years

Tract-Level Information Required

- Nonresponse: tract-level data imputed
- June Area Tool
 - Historical CDLs
 - Historical FSA Data
 - Predictive CDLs (beginning in 2021)
- Predictions for current season
 - Predictive CDL
 - Modeled CSB prediction
- If the two predictions agree, imputation tends to be accurate
- Imputation will be automated for these tracts beginning June 2024

Leveraging Survey and Non-Survey Data for Estimation

- Modeling at an aggregated level of geography
 - Examples: county or state
 - Combine multiple estimates and covariates to produce estimate
- Modeling at the unit level
 - Requires linkage of survey and non-survey data
- Goal: estimate acres planted to corn
 - Pre-season
 - In-season
 - Post-season

Estimating Planted Acreage: Corn

Agricultural Survey

• Conducted quarterly (March, June, September, December)

County Agricultural Survey

- Additional data collected in December
- December surveys provide foundation for county estimates
 - -Planted acreages
 - -Harvested acreages
 - -Production
 - -Yield

Wealth of Non-Survey Data

Cropland Data Layers (CDL)

FSA Common Land Unit and 578 data

Crop Sequence Boundaries ("Fields")

Soil Moisture Data

Precipitation Data

Early Season CDLs

Ready to Link Survey and Non-survey Data?

- Non-survey data are geospatially referenced
- Survey data are collected at the farm level
 - Multiple fields in most farms
 - A farm may be in multiple counties or states
 - May be able to determine acreage of corn for a set of fields
 - BUT, cannot determine which particular fields are to be planted to corn

Estimating Planted Acreage: Corn

- •Three Bayesian hierarchical models used to combine information at the county level
 - Planted acreage
 - Harvested acreage, which must be no greater than planted acreage
 - Yield—production estimated by (yield) · (harvested acreage)
- Challenges
 - County estimates must sum to state estimate
 - Honoring the bounds obtained from administrative data
 - Rounding

Moved into production in 2021 for 2020 Growing Season

Leveraging All Useful (Survey and Non-Survey) Data

- •FSA and NASS have different definitions of a farm
- NASS list frame is not fully geo-referenced
- Surveys
 - Generally, not designed to provide estimates lower than a state
 - Information at farm level does not provide field-level data
- Integration into existing production process
 - Flow of survey and non-survey data
 - Analysis methods
 - Review processes

Final Thoughts

- NASS conducts over 400 surveys annually to produce over 450 reports each year
 - Respondent burden is high, especially for large producers
 - Response rates decreasing
 - List frame coverage decreasing
- Leveraging all data has had an impact on production processes
- Challenges to leveraging all useful data (survey and non-survey)
 - Access is often challenging
 - Record-level versus higher level of geography
 - Survey design
 - Major effort underway to modernize processes

Progress is being made!

20

Selected References

Abernethy, J., P. Beeson, C. Boryan, K. Hunt, L. Sartore. Preseason crop type prediction using crop sequence boundaries. *Computers and Electronics in Agriculture. In Press.*

Boryan C, Yang Z, Mueller R, Craig M. (2011) Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. *Geocarto Int*. 26(5):341–58.

Chen, L., Nandram, B., Cruze, N.B. (2022) Hierarchical Bayesian model with inequality constraints for county estimates. *Journal of Official Statistics* 38(3):709–732. <u>https://doi.org/10.2478/jos-2022-0032</u>.

Chen, L., Nandram, B., Cruze, N.B. (2021a) Hierarchical Bayesian model with inequality constraints for US county estimates. (*Journal of Official Statistics* accepted.)

Chen, L., Cruze, N.B., Nandram, B. (2021b) Preserving acreage relationships in small area agricultural models. (In preparation.)

Chen, L., Cruze, N. B., and Young, L. J. (2022). Model-based Estimates for Farm Labor Quantities. *Stats* 5(3): 738-754. https://doi.org/10.3390/stats5030043.

Cruze, N.B., Chen, L., Guindin, N. and Nandram, B. (2020). Dancing distributions: developing a better understanding of county-level crop yield from posterior summaries. In *JSM Proceedings, Section on Government Statistics*. American Statistical Association, Alexandria, VA. 2262-2272.

Cruze, N.B., Erciulescu, A.L., Nandram, B., Barboza, W.J., Young, L.J. (2019) Producing official county-Level agricultural estimates in the United States: needs and challenges. *Statistical Science*. 34(2), 301-316. <u>https://doi.org/10.1214/18-STS687</u>

Erciulescu, A.L., Cruze, N.B., Nandram, B. (2018). Benchmarking a triplet of official statistics. *Environmental and Ecological Statistics*, 25(4), 523-547. https://doi.org/10.1007/s10651-018-0416-4

Erciulescu, A.L., Cruze, N.B., Nandram, B. (2019). Model-based county-level crop estimates incorporating auxiliary sources of information. *Journal of the Royal Statistical Society, Series A*, 182, 283-303. <u>https://doi.org/10.1111/rssa.12390</u>

Selected References

Erciulescu, A.L., Cruze, N.B., Nandram, B. (2020) Statistical challenges in combining survey and auxiliary data to produce official estimates. *Journal of Official Statistics*. 36(1), 63-88. <u>https://doi.org/10.2478/jos-2020-0004</u>.

Nandram, B., N.B. Cruze, A.L. Erciulescu and L. Chen. (2022). Bayesian Small Area Models under Inequality Constraints with Benchmarking and Double Shrinkage. Research Report RDD-22-02, National Agricultural Statistics Service, USDA. Available at:

https://www.nass.usda.gov/Education_and_Outreach/Reports,_Presentations_and_Conferences/reports/ResearchRep ort_constraintmodel.pdf.

Nandram, B., Erciulescu, A.L. and Cruze, N.B. (2019). Bayesian benchmarking of the Fay-Herriot model using random deletion. *Survey Methodology*, Statistics Canada, Catalogue No. 12-001-X, Vol. 45, No.

2. https://www150.statcan.gc.ca/n1/pub/12-001-x/2019002/article/00004-eng.htm

National Academies of Sciences, Engineering, and Medicine (2017). *Improving Crop Estimates by Incorporating Multiple Data Sources*. National Academies Press. <u>https://doi.org/10.17226/24892</u>.

Sartore, L., C. Boryan, P. Willis. (2022) Developing entropies of Predictive Cropland Data Layers for crop survey imputation. *IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium*, 1404–1407. https://doi.org/10.1109/IGARSS46834.2022.9884059.

Sartore, L., Boryan, C., Dau, A., & Willis, P. (2023). An Assessment of Crop-Specific Land Cover Predictions Using High-Order Markov Chains and Deep Neural Networks. *Journal of Data Science* 21(2): 333-353. Available at: <u>https://doi.org/10.6339/23-JDS1098</u>,

Young, L.J. and L. Chen. (2022) Using Small Area Estimation to Produce Official Statistics. *Stats* 5(3): 881-897. https://doi.org/10.3390/stats5030051.

Thank you!

Linda.J.Young@usda.gov

THE USE OF SCANNER DATA IN OFFICIAL STATISTICS

Tomas Rudys, State Data Agency (Statistics Lithuania)

International Statistical Institute

General information

- Data acquisition process
- Health checks for raw data
- Classification
- Conclusions

Objective:

 Integration of scanner data received from retail trade companies/chains (private data owners) to produce price indices (particularly HICP)

Legislation:

 Private data owners must provide data for official statistics purposes free of charge according to national statistical law (Republic of Lithuania Law on Official Statistics and State Data Governance, articles 10, 13, 18)

No agreements:

- Order of DG of SL "ON THE PROVISION OF STATISTICAL DATA FOR THE STATISTICAL SURVEY OF CONSUMER PRICES " approves:
 - List of statistical indicators at item level (25-30 variables)
 - Information on survey
 - Respondent declaration

State Data Agency receives data from:

- 5 biggest retail trade chains (food products)
- 5 biggest retail trade chains (constructions, electronics)
- 5 biggest pharmacy chains

About data:

- **Periodicity:** daily of weekly (data providers can choose)
- Aggregation: at item/product (aggregated) or receipt (not aggregated) level
- Transmission of data: possible to choose different types (usually data providers are choose to send CSV files trough SFTP)

Amount of data:

- 3 chains
- from 01-22 to 02-04 (**2 weeks**)
- Total rows at product level: ~ 13 mln.

Data acquisition process:

Data pipeline for automated data preparation

Data pipeline for automated data preparation

Health checks for raw data

Health checks 🕐	0	Show only critical failures	Expand all	• Watch	all 🔻
Configured checks					
প্রৈ Status					
СНЕСК	CURRENT STATUS	HISTORY (RE	CENT ON RIGHT)		
Data Expectations Monitor	Passed	• • •	••••	• • •	• •
Related checks 🕜					
♥ Status					
СНЕСК	CURRENT STATUS	HISTORY (RE	CENT ON RIGHT)		
Schedule status Ermitažas šaltinis	Passed	• • •	• • • •	• • •	~

Health checks:

- Data integration to the platform passed
- Time since last updated
- Primary data validation passed
- Data freshness
- Corrupted files (null values)
- etc.

Data classification (ECOICOP)

Data classification pipeline:

Data classification (ECOICOP)

Application for manual data classification (building training data set):

Klasifika	vimas pagal ECOICOP	☆ !	🗜 Prekės 🔳 Švi	eslentė 🕜 Neaišk	ių prekių peržiūra	% COICOP2018	Kategorijos					🚺 Kaip naudoti aplikaciją 🏼 🏞
Filtras	ltras COICOP2018 priskyrimas Nusiųsti sukla						eitimas 🕨 Nusiųsti suklasifikuoti AIP					
ECOICOP 3			Prekes Pavadinimas	Prekes Aprasymas	Kategorijos Aprasymas	Prekybos Centras	Redaguotas ECOICOP	Redagavimo Busena	Redagavimo Data	COICOP2018	COICOP2018 Pavadinimas	Kombinuotas Kodas
Select	•		plasta fun šiukšlių maišai	No value	šiukšliadėžės maišai	iki	No value	Naujas	No value	No value	No value	No value
REDAGUOTAS ECOICO)P		kitchen antibakteriniai	No value	šiukšliadėžės maišai	iki	No value	Naujas	No value	No value	No value	No value
No value	130,371		plasta knotties šiukšlių maišai	No value	šiukšliadėžės maišai	iki	No value	Naujas	No value	No value	No value	No value
03.1.2.2	7,504		žaislai katei kamuoliukai	No value	gyvūnų priežiūra /	iki	No value	Naujas	No value	No value	No value	No value
09.3.1.2	7,247		žaislas futbolo kamuolys	No value	gyvūnų priežiūra /	iki	No value	Naujas	No value	No value	No value	No value
09.5.1.3 Sh	5,319		žaislai pliušiniai su virve 13 cm	No value	gyvūnų priežiūra /	iki	No value	Naujas	No value	No value	No value	No value
RENDRA DAIEŠKA			maison castel muscat med	No value	prancūziškas baltas vynas	iki	No value	Naujas	No value	No value	No value	No value
			maison castel grenache med	No value	prancūziškas raudonas vynas	iki	No value	Naujas	No value	No value	No value	No value

Algorithms for classification

- Currently running: SVM (A support vector machine) + LR (logistic regression)
- Python (scikit-learn), PySpark
- Train data set: 35095; Test data set 8774

Model input and output:

Model AP	Objective API					View as code
Inputs (1)				Outputs (1)		
-	df_in	• Dataset	Required	▼ III df_out	Dataset	Required
	prekes_id	• String	Required	prekes_id	String	Required
	prekybos_centras	• String	Required	prekybos_centras	String	Required
	prekes_apibrezimas	• String	Required	prekes_apibrezimas	String	Required
				svm_prediction	String	Required
				svm_probability_value	String	Required
				lr_prediction	String	Required
				lr_probability_value	String	Required

Tested models (more that 13):

ECOICOP_LR_SVM_combination_with 🗣	Thu, Mar 28, 2024, 1:28 PM		0	P 0
ECOICOP_LR_SVM_combination_with_pr	Thu, Mar 28, 2024, 9:45 AM		0	P 0
ECOICOP_LR_SVM_combination_with 🗣	Mon, Mar 4, 2024, 2:14 PM			P 0
ECOICOP_LR_classifier 1.1	Wed, Feb 28, 2024, 2:15 PM		0	P 0
ECOICOP_SVM_classifier_with_probabilit	Wed, Feb 21, 2024, 4:44 PM			P 0
ECOICOP_SVM_classifier_with_proba ×	Wed, Feb 21, 2024, 3:28 PM			P 1
ECOICOP_SVM_classifier_with_probabilit	Wed, Feb 21, 2024, 3:14 PM			P 0
ECOICOP_SVM_classifier_with_probabilit	Wed, Feb 21, 2024, 2:37 PM		0	P 0
ECOICOP_SVM_classifier_with_probabilit	Wed, Feb 21, 2024, 1:24 PM		0	P 0
ECOICOP_SVM_classifier_1.2 ×	Mon, Feb 12, 2024, 2:25 PM		0	P 1
ECOICOP_SVM_classifier_with_proba 🗣	Thu, Jan 4, 2024, 4:56 PM		0	P 0
🔺 ECOICOP_SVM_classifier_with_proba 👒	Wed, Jan 3, 2024, 11:26 AM			P 0
Last_MA_model_2023-11-21T13:23:42 ♥	Mon, Nov 27, 2023, 11:41 AM			P 0

Model:

0	def	<pre>train_model_combination(training_df):</pre>
		X_train = training_df['prekes_apibrezimas']
		y_train = training_df['ECOICOP']
		<pre>model = VotingClassifier(estimators=[('lr', Pipeline([('features', CountVectorizer()), ('classifier', LogisticRegression())])) ('svm', Pipeline([('features', TfidfVectorizer()), ('classifier', SVC(probability=True))]], voting='soft')</pre>
		<pre>model.fit(X_train, y_train)</pre>
		return model

Classification accuracy

Section 2 Modeling Objective - Maisto prod File ▼ Help ▼ 円1 ♥ 1	luktų k 🏫
← 倄 Home > 🞢 Evaluation	
Viewing metrics on	Overall prediction ECOICOP prekybos_centras
🖬 test_dataset 👻 •••	
O Using latest metrics for each model	ECOICOP_LR_SVM_combination_with_probabili 💊
Select models to view on dashboard	Model owners
Select models Clear all	File size -
Add specific models to the evaluation dashboard	Overall
🗠 ECOICOP_LR_SVM_combin 🗣 🗙	
Select models	Accuracy Precision Recall F1 97.379 97.391 97.379 97.344
Search for models	
metrics or metadata	
Search	

0

Validation of classification results (manual)

Application of AI (LLM) for classification

Problem: ECOICOP -> COICOP 2018

Posibility to use different models:

OpenAl GPT 3.5 Turbo (16K) - (OpenAl's GPT 3.5 Turbo (16K) chat model)

OpenAI GPT4 (Default)- (OpenAI's GPT4 chat model)

OpenAl GPT4 32K - (OpenAl's GPT4 32K chat model)

OpenAl GPT4 Turbo - (OpenAl's GPT4 Turbo chat model)

shutterstock.com · 80415847

Conclusions:

- Integration of scanner data is complex process
- Requires:
 - Special methodological knowledge
 - Technological capabilities and solutions
 - Staff involvement

Near future plans:

• Index calculation

Thank you

Nowcasting industrial production index with highfrequency toll data

Peter Knížat Statistical Office of the Slovak Republic University of Economics in Bratislava

International Statistical Institute

Agenda

- Toll data analysis, processing and aggregation
- Estimation of index from toll data comparison with Industrial Production Index

Empirical Mode Decomposition – identification of trend and cyclicality Results and conclusions

Assumption and hypothesis

The fluctuation in the industrial production output in Slovakia can be detected through freight. The freight is estimated using toll data that are daily records of all vehicles (trucks) passing through satellite-monitored sections of roads.

Data processing and aggregation

Index formulae – bilateral

- We use two types of indices (unweighted) bilateral and multilateral.
- **Jevons** index that is based on the geometric average:

$$I_{Jevons}^{0,t} = \prod_{i=1}^{N} \left(\frac{q_i^t}{q_i^0} \right)^{\frac{1}{N}}, \qquad t = 1, ..., T$$

- where q_i^0 and q_i^t refer to a count of passages in the base period 0 and the current period *t* for each vehicle *i*
- Jevons index can also be expressed for month-on-month changes but these are normally chained from the base period

Index formulae – multilateral

• **Time-Product Dummy** index that is a (fixed-effects) regression based index:

$$\ln q_i^t = \partial^0 + \sum_{t=1}^T \partial^t D_i^t + \sum_{i=1}^{N-1} \gamma_i D_i + \varepsilon_i^t, \qquad t = 0, \dots, T$$

- D_i^t is a dummy variable that takes the value 1 if the vehicle is observed in month *t* and 0 otherwise and D_i is a dummy for each observation (fixed-effects are the estimated parameters γ_i) we can use the Ordinary Least-Squares method for the estimation of parameters
- Time-Product Dummy index is estimated as

$$I_{TPD}^{0,t} = exp(\hat{\partial}^{t}) = \frac{\prod_{i \in S^{t}} (q_{i}^{t})^{\frac{1}{N^{t}}}}{\prod_{i \in S^{0}} (q_{i}^{0})^{\frac{1}{N^{0}}}} exp[\bar{\hat{\gamma}}_{i}^{0} - \bar{\hat{\gamma}}_{i}^{t}], \qquad t = 1, \dots, T$$

Empirical Mode Decomposition

 Empirical Mode Decomposition is suitable for decomposing time series that exhibit a strong nonlinearity and non-stationarity:

$$I^{0,t} = \sum_{j=1}^{n} IMF_j(t) + \varepsilon_n(t), \quad t = 1, ..., T$$

• where $IMF_j(t)$ are intrinsic mode functions, its extraction is obtained through the cubic splines interpolation that are fitted around local maxima and minima of original time series – these are fitted iteratively until the residual term $\varepsilon_n(t)$ is either a monotonic trend or a constant

Results – Toll index vs Industrial Production Index

- Both Jevons and TPD index seem to capture cyclicality of IPI index
- Most of time periods, IPI index is above both toll indices
- Jevons index is more volatile than TPD index (except 2020)

Index time series decomposition – Empirical Mode Decomposition

Conclusions

Thank you Mexico for hosting us

