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“Globally, only modest
progress has been made
since 2000, with the
percentage of deaths
registered increasing from
36% to 38%, and the
percentage of children
aged under 5 years
whose birth has been
registered increasing from
58% 10 65%.”

Mikkelsen et al., Lancet,
2015
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Overview

- Monica Alexander talked about estimating proportion of intrapartum stillbirths

- Data: CRVS, health management information systems, health facility, Global Network Study, UN [GM
estimates of NMR, SFB, etc.

- Challenges: Different data quality, missing proportion, and measurement errors across SOurces.
- Method: Pooling data from all countries in a regression model and model the shared components.
- /henke Wu talked about estimating cause-specific mortality fractions

-+ Data: Verbal autopsy from multiple non-local populations.
-+ Challenges: Relationship between symptoms and causes change over populations.

- Method: Pooling data fromm multiple populations and model the shared components and heterogeneity.
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Discussion overview

- A key theme In both talks is how to combine information from muiltiple
datasets.

+ More specifically, how to combine weak information...
- This Is an iImportant problem in many population health research domains.

| will do a brief recap of both talks, mention some related topics (from my
work), and mention some guestions and thoughts.
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- The paper jointly models different data sources over 92 countries!

Place-level prevalence is decomposed Into

+ Main effects from region, country, subpopulation,

- Fixed effect from NMR (log scale),

Place-specific time trends,

- Adjustment for gestational age definition,

- Additional noise based on study type, if not CRVS.

- Country-level prevalence are estimated as weighted average of place-level prevalence.

- Weights computed by comparing observed counts with UN IGME estimates
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The model is constructed very carefully with lots of thoughts going into the
Mmodel component, specification, and how to properly account for data quality.
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Figure 6: Subnational estimates of USMR using the 2015-2016 DHS in Malawi over selected years,
with hatching lines indicating the width of the 95% credible intervals of the estimates. Denser hatching
correspond to higher uncertainty. Estimates for 2019 in the last column are from the model projection
and thus have higher uncertainty.
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binary indicators using health and demographic survey data, described in Fuglstad et
al. (2022) <doi:10.48550/arXiv.2110.09576> and Wakefield et al. (2020)
<doi:10.1111/insr.12400>.

Population Fraction
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Author: Qianyu Dong [cre, aut], Zehang R Li [aut], Yunhan Wu D) :
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Verbal Autopsy

VA Is usually the only feasible method
to collect information on cause o

death where traditional death

certification or autopsy are not
possible.

-+ /Zhenke’s paper deals with the

important problem of distribution shi
across datasets.

+ This Is also a general problem for an

predictive modeling iIn demographic
and health research.
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Iree-structured domain adaptation

+ The key Idea here Is that that there are multiple types of symptom profiles for
any given cause of death.

+ The observed symptom distribution given each cause of death is a mixture of
these latent profiles, and thus can be heterogeneous across populations.

-+ The mixing weights of these latent profiles are more likely to be similar if the
populations are “close” to each other.
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- In related work, we have
developed methods for
domain adaptation across
subpopulation defined by
age, sex, time, etc., and use
structured prior to smooth
the estimates.

risk_factor

loss_taste

loss_smell

fatigue
abdominal_pain
vomiting

diarrhea
0O2_saturation_below_95
discomfort_respiratory
dyspnea

sore_throat

cough

fever

contact_animal

risk_factor

loss_taste

loss_smell

fatigue
abdominal_pain
vomiting

diarrhea
0O2_saturation_below_95
discomfort_respiratory
dyspnea

sore_throat

cough

fever

contact_animal

Symptom Profiles
for COVID-19 Related Deaths

1234567 8 910
Latent Class

0.25 0.50 0.75

Symptom Profiles
for Non COVID-19 Deaths

123 456 7 8 910

Latent Class

0.25 0.50 0.75

Subset of Symptom Profile Weights Over Time

0-30 30-40 40-50 50-60 60-70 70-80 80-90 90+
0.3 1
@
0.2 1 3
S
0.14 N )
0.0-
o h
D
0.1 - w \/\/\ /\_/\_\
0'O-I T T T T T T T T T T T T T T T T T T T T T T T
Jan May SepdJan May SepdJdan May SepJan May SepJan May SepdJan May SepdJdan May SepdJdan May Sep

Latent Class Index 1 2 3 410 10
Subset of Symptom Profile Weights Over Time
0-30 30-40 40-50 50-60 60-70 70-80 80-90 90+

0.4 1
0.3 1
0.2 1
0.1 1

i

slewo]

0.0 -

0.4 1
0.3 1
0.2 1
0.1 1

0.0+

A e

N

ooty
RV

ol

S[eN

Jan M

4t010

Latent Class Index 1

2 3

ay SepJan May SepJan May SepdJan May SepJan May SepdJdan May SepdJdan May SepJdan May Sep




0.3 1
0.2 1

0.14
0.0

slewo

0.3 1

24N

(g

S[eN

slewo]

0.4 1
0.3 1
0.2 1
0.1 1

sleN

How much information to share
(A) (B)
developed methods for W
domain adaptation across &@};& Lo % Eﬁ pueg] )
age, sex, time, etc., and use - - b w | o Py 2 e e
the estimates. e 0% ors Latent Cass Index — 1 — 2 — 3 — 41010
(C) (D)

-+ What Iif one or several
domains significantly deviate gfg;M m\a/ Dol &é« \gg M
assume”? How to prevent %
qegatve efFeCt From JOIrt 12345678 910 Jan May SépJWJ%Jﬁdén May SepJan May SepJan May SepJan May Sep

° |n related Work, We have Symptom Profiles Subset of Symptom Profile Weights Over Time
subpopulation defined b
POP y ML
StrUCtU red prIOr 'tO Smooth ) 1 2 3L eftef\t gl a7558 9 10 Jan May SepJan May SepJan May SepJan May SepJan May SepJan May SepJan May SepJan May Sep
from the structure we W W
modeling”

B
Latent Class Index 1 2 3 4to 10
025 050 0.75



The importance to have estimates




The importance to have estimates

+ Early work on VA usually have
arbitrary thresholds to report
“undetermined” as a cause
assignment.



The importance to have estimates

+ Early work on VA usually have

arbitrary thresholds to report 1.00-

‘undetermined” as a cause

assignment. 0.75-
0.25~
0.00 -

IntervA4

CSMF by broader cause categories

InSilicoVA

Causes
Undetermined
Matemal
External
causes specific to infancy
NCD
TB/AIDS



The importance to have estimates

Early work on VA usually have CSMF by broader cause categories
arbitrary thresholds to report 100- —
‘undetermined” as a cause -
: Causes
aSSIQHmeﬂt Lt Undetermined
Matemal
Lo External
§ a7 causes specific to infancy
NCD

TB/AIDS

0.25- .
Communicable

0.00 -

IntervVA4 InSilicoVA

https://cran.r-project.org/web/packages/
openVA/iIndex.html



The importance to have estimates
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The need for aggregation

- How do we combine VAs that are not from a probabilistic sample, with
porobabillistic surveys or medically certified deaths?
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Background and Motivation

* Estimated 2 million stillbirths MOVING FASTER TO END PREVENTABLE NEWBORN

globally DEATHS AND STILLBIRTHS BY 2030
2025 COVERAGE TARGETS AND MILESTONES

* Reducing stillbirths is an
important part of the UN
Sustainable Development Goals
agenda

¢ ZDx

» Specific aims to reduce stillbirth unicef@ for every child ) fond Heath
rate and end preventable
stillbirths




Background and Motivation

e Stillbirths can either occur before or after the onset of labor (antepartum or
iIntrapartum

o Stillbirths that occur intrapartum are largely preventable with adequate access
to medical resources and healthcare

Goal of this project: estimate the proportion of stillbirths that are
intrapartum (IPSB) for all 195 UN-member countries over the period
2000-2021



Background and Motivation

 There are a number of data quality and availability issues that make estimating
IPSB challenging, particularly in low- and middle-income countries

* \We use a Bayesian hierarchical penalized splines regression model with a
post-estimation weighting step to account for many of these issues

e Just published in JRSS C: https://academic.oup.com/|rsssc/advance-article/
doi/10.1093/jrsssc/glae017/7636258

» Estimates published in UN report on stillbirths: https://childmortality.org/

» Joint work with Michael Chong (Statistics, UofT), with support and input from
members of the UN Interagency Group for Child Mortality Estimation (UN
IGME) and UNICEF


https://academic.oup.com/jrsssc/advance-article/doi/10.1093/jrsssc/qlae017/7636258
https://academic.oup.com/jrsssc/advance-article/doi/10.1093/jrsssc/qlae017/7636258
https://academic.oup.com/jrsssc/advance-article/doi/10.1093/jrsssc/qlae017/7636258

Data (or lack thereof)



Characteristics of data on stillbirth timing

* Civil Registration and Vital Statistics (CRVS) system

.  Health and Medical Information System (HMIS

Data collection system 4 ( )
* Single health facility

* Population-based study

e Fetal heartbeat

Classification method
* Appearance of skin

Stillbirth definition » ‘L ate’ (official definition): >28 weeks gestation or >1000g

o ‘Early’: >22 weeks gestation or >5009



Data availability

* At |least one data point for 92
countries

* Big differences in data
availability by region

- Data availability by region

SDG region Observations Countries Country-years
Central and Southern Asia 163 7 65
Eastern and South-Eastern Asia 57 8 53
Latin America and the Caribbean 272 13 171
North America, Europe, Australia and New Zealand 460 30 368
Northern Africa and Western Asia 43 8 42
Oceania (exc. Australia and New Zealand) 1 1 1
Sub-Saharan Africa 280 25 158

* Big differences in data type by

region

Proportion of observations by data collection system

SDG region CRVS Health facility Subnat pop-based HMIS
Central and Southern Asia 0.067 0.110 0.810 0.012
Eastern and South-Eastern Asia 0.684 0.281 0.035 0.000
Latin America and the Caribbean 0.794 0.044 0.162 0.000
North America, Europe, Australia and New Zealand @ 0.980 0.015 0.004 0.000
Northern Africa and Western Asia 0.465 0.047 0.093 0.395
Oceania (exc. Australia and New Zealand) 0.000 1.000 0.000 _0.000
Sub-Saharan Africa 0.007 0.139 0.375 = 0.479
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Modeling approach



Modeling goals

e Allow for different levels of measurement error based on data
system

 Obtain estimates over time in the absence of temporal data
 Data-driven trends in presence of reliable temporal data
* Account for different stillbirth definitions

* Adjust for under coverage



Model set up

* Consider data on stillbirths by timing as available for a specific ‘place’

» For observationsi = 1,..., N let y; and z; denote the number of observed
iIntrapartum and antepartum stillbirths respectively. Then

y:| . ~ Binomial(y; + z;, ¢,)

» The ¢, represents the proportion of intrapartum stillbirths, to be estimated.



Data model

The proportion ¢ is modeled

logit(¢h;) = p; + ¢

with &; ~ Normal(0,5-

s[i depends on the type of data system of

]). The variance 03, (il

observation 1:

Opy ™~ Normal*(0,1°) if s = health facility, HMIS, population study

Note that the estimated variance for health facility > pop study > HMIS



Process model

The “true’ transformed proportion y; is modeled as

wi = Do+ Dy + Petiy + Porig + PNMR10E NMR (i1 411 + Mopitagil T Yelilmli)



Hierarchical intercepts

The ‘true’ transformed proportion y; is modeled as

ui = Do+ Doy + Petiy + Porig + PNMR10E NMR (i1 411 + Mopitagil T Yelilmli)

——

Model intercepts hierarchically
(place within country within region
within the world) to pool information
across similar areas



Neonatal mortality as a covariate

The “true’ transformed proportion y; is modeled as

wi = Do+ Dy + Petiy + Porig + PNMR10E NMR (i1 411 + Mopitagil T Yelilmli)

Trends in neonatal mortality rate
inform trends in IPSB, allowing
for reasonable trends in albsence
of data



logit(proportion IPSB)
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Penalized splines

The ‘true’ transformed proportion y; is modeled as

ui = Do+ Doy + Petiy + Porig + PNMR10E NMR (i1 411 + Mopitagil T Yelilmli)

——

Penalized splines component
allows for data-driven trends in
presence of reliable data.
Spline coefficients modeled as
random walk to ensure
smoothness



Penalized splines

« Jo allow for data-driven trends we include a place-time specific component M. which is modelled
using a first-order penalized splines set up

H
IEDWAGLAN
h=1

» Cubic B-splines k(1) with knots placed at integer year values

o First-order differences in the coefficients Ahapare penalized to ensure a level of smoothness in the
resulting fit:

Ah,p = Uy — 1 p
2
A ~ Normal(0,0%)

- Coefficients a , are constrained to sum to zero to ensure identifiability



Definitional adjustment

The “true’ transformed proportion y; is modeled as
wi = Do+ Dy + Petiy + Porig + PNMR10E NMR (i1 411 + Mopitagil T Yelilmli)

——

Definitional adjustment to
account for different stillbirth
definitions



Definitional adjustment

« Adjustment Yo.m for definition g (early or late) and income group m (high or low)

 Make use of auxiliary data which gives information on stillbirths by timing at
different gestational ages:

1. Euro-Peristat: high-quality data for 17 European countries (BUT country
names are suppressed)

2. Global Network Maternal Newborn Health Registry: information for 8 low-
and middle-income countries

« Use overlapping data to inform prior distribution on adjustment term Yom



Constructing country-level estimates

» Estimation of IPSB ¢ happens at ‘place’ level

» How to get country-level estimates ¢?CJ?

* |f the ‘place’ is just the country then

Va\ Va\

¢c,t = ¢p,t

 But usually a ‘place’ is a subset of the whole country



Constructing country-level estimates

 If we had full coverage, and we knew the place weights W, then the country
estimate would just be

* ...but in practice, we don’t have full coverage, and we don’t know place-
specific weights



Constructing country-level estimates

Proposed weighting scheme:

Z W ObS [ Z ]¢unobs

pclpl=c p:clpl=c
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stillbirths to estimated total
stillbirths (with uncertainty)



Constructing country-level estimates

Proposed weighting scheme:

Z w obs 1 — Z ¢unobs

pclpl=c

Unobserved component
accounts for under
coverage

Welights are estimated based on
ratio of observed number of
stillbirths to estimated total
stillbirths (with uncertainty)



Constructing country-level estimates

Proposed weighting scheme:

Z w obs

pclpl=c

Welights are estimated based on
ratio of observed number of
stillbirths to estimated total
stillbirths

1 — 2 ¢unobs

Unobserved component
accounts for under
coverage

Informed by
NMR and
regional
patterns



lllustrative Results



Region estimates
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Impact of weighting

Full model

No weighting
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Summary

* Proportion of stillbirths that are intrapartum is an important indicator to
monitor to track progress towards the goal of ending preventable stillbirths

» Data availability and quality varies substantially by region, with other definition
and classification differences also reducing comparability

 Bayesian hierarchical penalized splines model with post weighting accounts
for many of issues, and performs reasonably well in a series of validations

* Future work: improve estimation of weights; estimation of total stillbirths and
timing In one model



Thanks!
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Gestational adjustment

» Lety..and 7., denote respectively intrapartum and antepartum stillbirth counts for
some country ¢ and some gestational definition 2. The counts are modeled

VeolPeg~ Binomial(y, . + 2. . Pc o)
|Ogitpcag — I/C,g + yg,m[c]
Uy g ™ Normal(0,10%)

e Where L. 0 IS given a vague prior and represents the mean under the late gestational

age definition. The difference between the proportions in the early and late definitions
IS therefore captured by the adjustment factor.



Construction of weights

« We construct an estimate vAvp as the ratio of the number of observed classified stillbirths in place p

to the number of total stillbirths expected nationally, based on UN IGME estimates of overall
stillbirths.

» Lets; =y + z; denote the sum of observed stillbirths classified as intrapartum or antepartum i.

o Let S'i = S’C[i],tm denote the estimate of total stillbirths from the UN IGME total stillbirth rate model
in the country ¢ and year t corresponding to the observation.

» Jo reflect uncertainty in the number of stillbirths, we directly use posterior samples of S’i when
computing our own posterior samples.

* Estimated weights are
_ z:i:p[i]=p K
p - ~
2 iplil=p

A\




Unobserved component

 The "unobserved" component for a country is centered at the estimate given
Its region and country intercepts and NMR level

~ b A A A ~ A ~ ~
/’tg?O > ﬂ0+ﬁr[c]+ﬁc+ﬁ +IBNMR10gNMRC,t+nC,t

¢unobs unobs)

ogit~! (4

. ﬁ ~and 77, , are new realizations of the sub-population effect and time trend to
reflect appropriate uncertainty about the unobserved population



Validation results

Table 4: Model evaluation metrics using 2000-2016 data as a training set and data from 2017 onward
as a test set.

Region Mean absolute error 95% prediction

interval coverage
Global 0.044 0.917
Central and Southern Asia 0.095 0.850
Eastern and South-Eastern Asia 0.014 1.000
Latin America and the Caribbean 0.028 0.960
North America, Europe, Australia and New Zealand 0.028 0.922
Northern Africa and Western Asia 0.049 0.615
Oceania (exc. Australia and New Zealand) 0.271 1.000
Sub-Saharan Africa 0.052 0.979




Validation results

Table 5: Model evaluation metrics from 10-fold cross validation.

Region

Mean absolute error

95% prediction
interval coverage

Global
Central and Southern Asia

Eastern and South-Eastern Asia
Latin America and the Caribbean

North America, Europe, Australia and New Zealand

Northern Africa and Western Asia

Oceania (exc. Australia and New Zealand)
Sub-Saharan Africa

0.041
0.102
0.039
0.025
0.021

0.029
0.271
0.063

0.925
0.943
0.980
0.928
0.927

0.829
1.000
0.916
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Outline

e Part 1. Background, gaps, and challenges
e Part 2: Proposed Bayesian approach
e Likelihood: nested latent class models

e Prior (for integrating similarity info between multiple datasets, or
“domains’; encoded by a tree)

e Part 3: Results + software (& &)



“Hidden Deaths”

B < 5%
5% to 50%
50% 1o 95%

- - 05%

Proportions of deaths covered by vital registration

Souce: Byass et al. (2013). Reflections on the Global Burden of disease 2010 Estimates. PLoS Med.

e Many people living 1n low- and middle-income countries are not covered by Civil
Registration and Vital Statistics systems

e (Cause-of-death data 1s lacking for 50% — 65% of the world’s population

e Registration of births and deaths, including cause of death information, 1s fundamental
to any public health system.



Counting deaths

e QOverall scientific goal:

e Estimate cause-of-death distribution in the population and assign individual cause-
of-death.

e Survey programs have been routinely used to obtain accurate demographic
information such as births and deaths 1n low-resource settings

e ¢.g., the Demographic and Health Surveys (DHS)

e (Collecting information on cause-of-death (COD) 1s much harder.



STAR WARS

. . 66 99
Counting deaths: “The New Hope e ANEW HOPE
e Verbal autopsy (VA): interview relatives or caregivers and ask questins about the

circumstances and symptoms leading up to a recent death.
e VA was first used 1n two research projects during 1965 — 1973 1in Punjab, India.
e The use of VA has significantly expanded in the last five years.

e VA module has been integrated into the civil registration system 1n many countries.

Historical perspective and review: Chandramohan et al. (2022). Estimating causes of death where there is no medical certification: evolution and state of the art of
verbal autopsy. Global Health Actions.



Population Health Metrics Research Consortium (PHMRC)

Verbal Autopsy Survey Form

VUUWITTUIILA LU THUD VwWillT spavo

ASIudy ID Number

POPULATION HEALTH METRICS RESEARCH CONSORTIUM
ADULT AND ADOLESCENT VERBAL AUTOPSY MODULE

~ SECTION 1: HISTORY OF CHRONIC CONDITIONS OF THE DECEASED
&l
1.1 Did the deceased have any of the
following? Epilepsy

Asthma 1. Yes
2. No
8. Refused to answer |
9. Don't know O] Heart Disease

Arthritis 1. Yes
2. No
8. Refused to answer
9. Don't know High Blood Pressure

Cancer 1. Yes
2. No
8. Refused to answer [
9. Don't know ] Obesity

Tuberculosis 1. Yes
2.No
8. Refused to answer
9. Don't know Stroke

Dementia 1. Yes

2. No

8. Refused to answer ]

9. Don't know COPD (Chronic Obstructive
Pulmonary Disease)
Depression 1. Yes

2. No

8. Refused to answer [

9. Don't know O AIDS

Diabetes 1. Yes
2. No
8. Refused to answer
9. Don't know

Population Health Metrics Research Consortium Adult and Adofescent Verbal Autopsy Module

ACTIVE VERSION

1. Yes

2. No

8. Refused to answer
9. Don't know

1. Yes

2. No

8. Refused to answer
9. Don't know

1. Yes

2. No

8. Refused to answer
9. Don't know

1. Yes

2. No

8. Refused to answer
9. Don't know

1. Yes

2. No

8. Refused to answer
9. Don't know

1. Yes

2.No

8. Refused to answer
9. Don't know

1. Yes

2. No

8. Refused to answer
9. Don't know

“Study ID Number ACTIVE VERSION

SECTION 7: OPEN ENDED RESPONSE AND INTERVIEWER COMMENTS/OBSERVATIONS
71

INSTRUCTIONS TO INTERVIEWER: Say to the respondent: “Thank you for the patient responses to this exhaustive set of questions. Could you please
summarize, or tell us in your own words, any additional information about the illness and/or death of your loved one?”

To the Interviewer: Write down what the respondent tells you in his/her own words. Do not prompt except for asking whether there was anything else after the
respondent finishes. While recording, underline any unfamiliar terms. You may also use this space to write down your comments and observations about the
interview.

END OF INTERVIEW

Thank respondent for their cooperation

Population Health Metrics Research Consortium Adult and Adolescent Verbal Autopsy Module

2007-2010 Adult/Adolescent Module

typically 200-300 questions; some with complex skip patterns; implemented with varying qualities across sites; less
costly and time-consuming than physician reviewing




Statistical Methods: “A Bayesian Revolution”

e analytic methods + reproducible open-source software —> confidence 1n large-
scale implementations of VA in many low and middle income countries (LMICs).

e Bayesian methods are critical: incorporate expert priors on symptom-cause
relationships, uncertainty quantification

e King and Lu (2008) Stat Sci.; McCormick et al. (2016) JASA; L1 et al. (2020)
Bayesian Analysis; Moran et al. (2021) JRSS-C, Li et al. (2024)

e openva.net (Clark, McCormick, L1 and others): dedicated to open-sourcing stat
tools for VA research

Li et al. (2023). The openVA toolkit for verbal autopsies. The R Journal


http://openva.net

“The Pain of Growth”

e Expansion of VA to new “domains’: new regions (e.g., Brazil, New Guinea) and/or
new time periods (COVID vs non-COVID periods)

e potential data distribution shifts call for domain adaptive methods
e New statistical question:

e (Can we estimate cause-specific mortality fractions (CSMFs) with some
robustness to data distribution shifts between the source and the target
domains?




Population Health Metrics Research Consortium (PHMRC)

Verbal Autopsy Data

hierarchy encodes geographical similarity

 The PHMRC VA gold-standard data
(Population Health Metrics Research Consortium, 2018):

* Mexico City, Mexico
 Andhra Pradesh, India

o Uttar Pradesh, India .

e Dar es Salaam, Tanzania
* Pemba Island, Tanzania Wy
* Bohol, Philippines.

* Gold-standard CODs are obtained from clinical diagnostics.

e We focus on 35 CODs at the finest level and 168 binary indicators.

° N=7841; »

e Differential rates of missingess (see right figure:
“Don’t Know”, “Refused to Answer” and no data.)

* We will take one site as the target and use the other five sites as source domains.

percent missing

00 02 04 06 08 1.0

........

......

Dar es Pembla
Salaam Island
: ‘ !

gt

.........

Mexico

Menta

.......

) Sl

|

I

................

100

survey question id
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Example of Between-Domain Differences: PHMRC Data

Probability of ‘trouble breathing' conditioning on sites and COD

Pemba island -

prob

.
domaln S > Bohol Island - 1.00
Dar es Salaam - N i - . - 0.75
Uttar Pradesh - | 0.50
Andhra Pradesh - ‘ 0.25
Mexico city - | 0.00
&
causes "
Pemba island -
prob

Bohol Island - 1.00
Dar es Salaam - 0.75
Uttar Pradesh - 0.50
Andhra Pradesh - 0.25
Mexico city - 0.00

&

Plots including only symptom—cause pairs with least 20 observations.



site hierarchy

Data: A Closer Look

Death Counts

cause hierarchy

Death counts by 335 causes and 6 sites for
N =7,841 deaths and J = 168 across all six sites in
the PHMRC data set.

The exact death counts are shown 1n
corresponding cells.
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site hierarchy

Data: A Closer Look s

33 13 2 -Suicide
-85 34 39 32 31 11 -RoadTraffic
D th C t -3 9 80 35 8 1 -Poisonings
ea Oun S - 7 2 31 37 23 3 -Otherlnjuries
= -8 37 31 31 30 3 -Homicide
7 18 35 31 25 6 ‘Fires
38 36 32 30 11 26 -Falls
4 0O 32 33 9 28 -Drowning
1 31 33 O ‘BiteofVenomousAnimal

e Sparse table

- 16 72

cause hierarchy e

-4 11

‘Leukemia/Lymphomas
-StomachCancer
-ProstateCancer
-‘LungCancer
‘EsophagealCancer
- 24 35
-9 31 108

-CervicalCancer

e “Small area estimation” =

0 o0 Ao O O O O O W
w
LN

0
0
0
0
0
0
33 0 -ColorectalCancer
0
0
0
0
6
0

e Trees provide prior information about o B K -
similarities between the domains (among the [ e o
columns) o - Z°

- 5 2 30 5 6 O -Epilepsy

- 77 105 88 47 59 38 -Diabetes

- 83 72 62 29 67 54 -OtherUnspecifiedNCD

- 68 92 102 105 49 O -RenalFailure

- 51 37 34 101 37 3 -OtherinfectiousandParasiticDiseases
-0 [120 136 43 BB o s

s)-22 17 101 27 108 6 1B

142 102 55 105 95 41 -Pneumonia

-0 0 29 35 34 2 -Malaria

- 27 18 77 48 37 21 -Diarrhea/Dysentery

»~- 78 81 76 69 112

0
[ DiseaseoftheCirculatorySystem J
%:--122 125 101 103 O -Stroke
0
o)
Q

e We have assumed trees are given

-OtherCardiovascularDiseases

116 76 101 104 3 -IHD...AcuteMyocardiallnfarction

()



Data: A Closer Look

Death Counts

In our experiments:

Mask the causes-of-death 1n one site

(column)

- target domain: masked site
- source domains: the rest sites

site hierarchy

cause hierarchy

.16 11 49
- 55 34 39

2 31

- 35 37 31
7 18 35

- 38 36 32

External

\l

1 1 31
15 72 7
31

4 11

- 23 59

- O

-Neoplasms
7

- O

-24 35 7

9 31 3
- 28 69 3
- 42 50 28
4 63 25

[ Respiratorydisorders J/.

OtherNoncommunicableDiseases

o] 39 133 51

41 39 71
—e- 5 2 30
- 77 105 88
- 83 72 62
- 68 92 102
- 51 37 34
0 120 136
22 17 101
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0O 0 29
- 27 18 77
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33 13 2
32 31 11
3% 8 1
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8 11 0
0 34 0
0 33 0
4 108 0

9 0
8 104 0
77 2 0
1 12 6
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Notation

* X,=(X;1,....X;;)T €{0,1}7 : a vector of binary responses for subjecti=1, ..., N
e (Y;,D;). (cause of death, domain)

e Y, takes value from{1,...,C}, indicating the cause of death among a total of pre-
specified causes

e D, takes its value from {0, 1,...,G}, indicating domain membership: O for target
domain, 1 to G for the G pre-specified source domains

e D;1s assumed to be observed for all subjects

e Y:observed for{i: D; # 0} 1n the source domains; unobserved otherwise



Notation

o Let YO = {Y; : D; # 0} and Y™ = {Y; : D; = 0}; we then have
Y _ (YObS, YmIS)T.

o Let X =(Xq,..., XN)T be an N X J binary data matrix for all subjects.

e D maps every row of data X to a leaf in the tree for domains 7.

— Similarities between domains are then characterized by between-
domain distances in 7,,.

o Finally, let D = (X, Y°", D) represent the data from all the domains.



Our Framework: Nested Latent Class Models

We assume the following model specifications for D:

cause of death: Y; | D; =g ~ Categoricalc(ﬂ'(g)),
latent class : Z; | Y; = ¢, D; = g ~ Categorical - (A99)),

/N TN
L N ==
N’ N NS

responses : X;; | Z; = k,Y; = ¢ neep Bernoulli(ﬁﬁ)),j c [J]
fori € [N], g € {0}U[G], where the population parameters w(9) = (7T§9>, . ,W((;g))T

with Zle 79 = 1 are referred to as “cause-specific mortality fractions” (CSMFs).
Importantly, {71'(9) ,g=20,1,...,G} are not constrained to be identical. We seek

to estimate (%) and {Y; : D; =0}.



Why bother?

e (1ven each cause, the conditional distribution of symptom approximated by a latent
class model. Relative to Gaussian thresholded approaches

e casy to control the number of classes, to induce parsimony

e computationally (much) easier

e New domain having new “innovations in the symptom distributions”?

e Add additional classes



Distribution Shift in VA Data

 For a domain, the joint distribution of (causes of death, VA responses) can be factored into

ﬁ a) a vector of population-level marginal probabilities of the \
causes (or “cause-specific mortality fractions”, CSMF)

& b) conditional distribution of the VA responses given a cause J

e a) CSMF may differ by domain: most natural - a cause may differentially contribute to
deaths occurred 1n different study populations.

* b) may differ by domain

 Need “intelligent information pooling between the domains”



Prior Distribution to Integrate the Tree Information
Condensed Summary

e Tree-informed Bayesian shrinkage prior

e hecuristics: “parameters connected by shorter paths 1n a tree a priori take more
similar values”

e we apply this framework to let 1'“* parameters diffuse along the tree (domain
hierarchy)



Nested Latent Class Models

Variational Algorithm for Approximate Posterior Inference

1. We use variational Bayes to conduct approximate posterior inference
(Ble1, Kucukelbir and Mcauliffe, 2017; Thomas et al. 2019)

2. This 1s more scalable for large trees and large sample sizes

3. This overcomes some known sampling 1ssues with MCMC for dealing
spike-and-slab priors (George and McCulloch, 1997)

R package 4 4 : https://github.com/zhenkewu/doubletree

The package 1s designed to work under all possible patterns of observed and
missing causes of death



https://github.com/zhenkewu/doubletree

Simulation Design

e Setup: G training domains (g =1, 2, ..., G), 1 target domain (g=0)
e Simulate VA response data and true CODs for all domains according to the true model

e Choose one domain as “target”, mask all or a subset of the chosen domain’s CODs



Results

e Performance Metrics

e CSMF accuracy: normalized L1 distance

Y cet [CSMELT — CSMFE™|
2(1 = minCSM Firue)

ACCoams =1 -

- Top cause accuracy, top 3 cause accuracy (McCormick et al. 2016 JASA)
- CSMF accuracy (Murray et al. 2011, Population Health Metrics)



Simulation Results

nodeu=1,.9

U=‘U0=1

D N R —— 5 — . ————————-—n-— - —— . W W W W WA A W OWE W OWE WS W M e

complete pooling 0 1 2 3 4 5 E

ad hoc domain grouping : QE: 1:¢2 8:'4 E: 55
no domain grouping ;.d .E 5.1": ;.2-5 :“3": ;.4. .E : .5. .E

(a) Simulation I: domain tree and different domain group-
ings used in comparison.



Simulation Results

Model

Ad Hoc Domain Grouping-

Ad Hoc Domain Grouping -

Domain Adaptive-
True Domain Grouping -

Complete Pooling-

No Domain Grouping+

Domain Adaptive -

True Domain Grouping -

Complete Pooling -

No Domain Grouping -

—E
::L - -

PR

different CSMFs similar CSMFs
stronger signal weaker signal stronger signal weaker signal
target=0 target=0 target=0 target=0
o —- - — --——
3 -~ S - as = -~
.- . " Q
— = || :
B SRR p -pe " S
a I e i |— ED‘ 1=
e -EA- - W= -
—1 - | Y=
::gL"’L ______ < I . _[E_. 4 ‘_l___ -
==k 0 |0 1 0 I LG STty 1. = "
——— — +— — — . =
————— S - — S |- - .- - — .- -
— B — f| - f... .a E
it | SR K e S
| = a5
i B — — — - ™ J“t__

00 02 04 0.6 08 1.00.0 02 0.4 06 0.8 1.000 0.2 04 0.6 0.8 1.00.0 02 0.4 06 0.8 1.0
CSMF accuracy

“7 unbalanced E3 balanced

(b) Simulation I: CSMF accuracy comparison.




PHMRC Data Results: “Similarity”

OtherCardiovascularDiseases -

Stroke -
IHD...AcuteMyocardiallnfarction - §

Suicide -

RoadTraffic -

Poisonings -

Otherinjuries -

Homicide -

Fires -

Falls -

_ Drowning -

BiteofVenomousAnimal -

OtherinfectiousandParasiticDiseases -

AIDS -

T8 -

Pneumonia -

> _ Malaria -

C aus e S Diarrhea/Dysentery -

Leukemia/Lymphomas -

StomachCancer -

ProstateCancer -

LungCancer -

EsophagealCancer -

ColorectalCancer -

CervicalCancer - [— ]

BreastCancer -

OtherCancers -

COPD -

Asthma -

Cirmhosis - I

hé'la_tlernal -

ilepsy -

Dl%beteg -

OtherUnspecifiedNCD -

enalFailure -

Mexico up Dar Pemba

\ °
Distance NN domalns

- (all but “AP”, a site from India)

(c) Estimated cause-specific cophenetic distances be-
tween AP (target) and each of the five source domains;
35 rows representing 35 causes used during model fitting.

Bohol



PHMRC Data Results: *“class profiles”

RenalFaiure — CaAusSces

AIDS
Male - Male - Male -
Heavy Drinker - No Injuries - No Injuries -
Sudden Confusion - Heavy Drinker - Heavy Drinker -
Sudden Loss of Consciousness - Sudden Confusion - Sudden Confusion -
Rapid Onset Headaches - Unconscious until Death - Sudden Loss of Consciousness -
Headaches - Sudden Loss of Consciousness - Rapid Onset Headaches -
Upper Belly pain - Loss of Consciousness - Upper Belly pain -
Difficulty Swallowing Liquids and Solids - Rapid Onset Headaches - Lower Belly Pain -
Chest Pain - Rapid Onset Protruding Belly - Difficulty Swallowing Liquids and Solids -
Continuous Trouble Breathing - Upper Belly pain - Change in Stool -
Trouble Breathing - Difficulty Swallowing Liquids and Solids - Chest Pain -
Cough - Chest Pain - Continuous Trouble Breathing -
Pale - Increased Trouble Breathing Lying Down - Trouble Breathing -
Significant Weight Loss - Continuous Trouble Breathing - Pale -
Weight Loss - Trouble Breathing - Significant Weight Loss -
Fever with Sweats - Significant Weight Loss - Weight Loss -
Intermittent Fever - Trunk Rash - Rash Everywhere -

Intermittent Fever -
Severe Fever -
Fever -

Intermittent Fever -
Severe Fever -
Arthritis -

Severe Fever -
Fever -

SurV ey e d Depression -

IHD-Acute MI Drowning

ccsymptoms,, Male - Male - ' Male -
Heavy Drinker - No Injuries - Self-inflicted Injury -
Sudden Confusion - Heavy Drinker - Drowning -
Sudden Loss of Consciousness - Sudden Confusion - Heavy Drinker -
Rapid Onset Headaches - Sudden Loss of Consciousness - Sudden Confusion -
Upper Belly pain - Rapid Onset Headaches - Sudden Loss of Consciousness -
Difficulty Swallowing Liquids and Solids - Rapid Onset Protruding Belly - Rapid Onset Headaches -
Chest Pain - Upper Belly pain - Rapid Onset Protruding Belly -
Chest Pain Month before Dying - Difficulty Swallowing Liquids and Solids - Upper Belly pain -
Continuous Trouble Breathing - Chest Pain - Lower Belly Pain -
Trouble Breathing - Chest Pain Month before Dying - Difficulty Swallowing Liquids and Solids -
Productive Cough - Fast Breathing - Chest Pain -
Cough - Continuous Trouble Breathing - Trouble Breathing Same in All Positions -
Pale - Trouble Breathing - Continuous Trouble Breathing -
Significant Weight Loss - Significant Weight Loss - Significant Weight Loss -
Weight Loss - Rash Everywhere - Rash Everywhere -
Intermittent Fever - Intermittent Fever - Rash on Extermeties -
Severe Fever - Severe Fever - Trunk Rash -
Fever - AIDS - Intermittent Fever -
Dementia - Arthritis - Severe Fever -
| ' ' ' ' 1
Class 1 Class 2 Class 1 Class 2 Class 1 Class 2
Response Probability TEEESE—————— \
0.00 0.25 0.50 0.75 1.00

classes

(a) Class-specific response probabilities based on a K = 2 class model (top 5 causes in AP and Drowning; top 20
symptoms with the highest estimated marginal probabilities).



PHMRC Data Results: “For some causes, domains differ in how the classes got

mixed”
AIDS
Bohol, Philippines -
Mexico City, Mexico -
Andhra Pradesh, India - |
Uttar Pradesh, India -
Dar es Salaam, Tanzania -
Pemba Island, Tanzania -
B

Bohol, Philippines -

domalns Mexico City, Mexico -
Andhra Pradesh, India -

Uttar Pradesh, India -

Stroke RenalFailure — C au S e S

L

IHD-Acute MI

Dar es Salaam, Tanzania -

Pemba Island, Tanzania -

Cla:ss 1 Claz';s 2 Claés 1 Cla'ss 2 Cla'ss 1 Cla:.;s 2
Mixing Weights __'E\
000 025 050 075 1.00 Cl 98S€eSs

(b) Variation of class-mixing weights between domains;
six sets of weights are shown for six causes of deaths (the
model uses 35 causes).



Main Points Once Again

e Distribution shifts between the source and target domains are common, €.g.,
 In VA, conditional distributions of symptoms given a cause may vary by study sites
 The degree of this variation may differ by cause

 Domain adaptive method 1s needed for improving the estimation of the target domain’s population-level
parameters and individual-level predictions

* Among many possible solutions, the present work focused on
* “how to use a tree to guide domain adaptation?”
e For illustration, we used a domain tree that encodes geographic similarity information.

* One can use domain-level 1nfo to form a hierarchy, e.g., by hierarchical clustering, and then use that
tree as mput for our method



Future Directions
Methods

e Current work assumed the same set of response probability profiles; can be relaxed
using techniques from recent robust clustering work (Stephenson et al. (2020))

e Different K’s across causes
e General graph-informed clustering with tensor decomposition approximation

e Negative transfer 1ssues: “a bad module/additional noisy data may harm statistical
performances. This has been noted 1n Multitask Gaussian Process literature.

e A further study of how to deal with cause-of-death labeled at multiple
resolutions



Future Directions
Applied

e How to deal with emerging prominent causes over different time
periods (COVIDI19...)?

e How to actively choose the most informative deaths to label?
e COD labels might be noisy:

e How to do privacy-robust analysis (“Died of Malaria, but in
fact...”)? Adversarial-labeling resistant analysis?



Paper:
Wu et al. (2024). Tree-informed Bayesian multi-source domain adaptation: cross-population

probabilistic cause-of-death assignment using verbal autopsy. Biostatistics.
https://do1.org/10.1093/biostatistics/kxae003

Software:
R package 4 4 : https://github.com/zhenkewu/doubletree

The package 1s designed to work under all possible patterns of observed and missing causes
of death

Thank you!
zhenkewu@umich.edu


mailto:zhenkewu@umich.edu
https://doi.org/10.1093/biostatistics/kxae005
https://github.com/zhenkewu/doubletree

